
Tethys on this blog has mostly been used to refer to the ancient ocean which used to run between the southern and northern continental blocks of Gondwanaland and Laurasia, which finally closed when the Mediterranean formed, all that’s left of it today really, and North and South America collided. Up until that point, an ocean had run right round the world, a little like the Southern Ocean today but near the tropics, which therefore had a powerful circular current and perhaps also strong winds. It would’ve allowed sail boats to navigate and travel quite easily around the planet, so in a way it’s a shame it ceased to be while we were still living in the trees, but maybe not.
The reason it was called Tethys stems from the fact that today’s Atlantic Ocean was named after the titan Atlas. Tethys the titan married her brother Okeanos, who was a vast river encircling the world. Tethys herself, although a mythical figure, has hardly any mythology attached to her. She’s more like Britannia, a mere symbol, in this case for the sea, and there is a further ancient ocean named after her brother Iapetus. She’s also the mother of the sea nymphs, the Oceanids, and numerous river deities. It’s a shame she didn’t do anything really.
The moons of Saturn are of course often named after titans, apart from the one which is actually called Titan, which is a bit weird really, but then most people call Cynthia (Selene, Diana, Artemis) “the Moon”, so Earth’s not much better. Tethys the moon is the innermost large moon of Saturn with a diameter of 1 050 kilometres, and is the second brightest moon per unit area after Enceladus. It’s also practically a twin of the next moon out, Dione, in terms of size. Both moons are in similar orbital resonance relationships with Mimas and Enceladus respectively, which needs some explaining because Mimas is quiet and cold inside whereas Iapetus is quite active and heated, apparently by tidal forces from Dione. Tethys is accompanied in its orbit by two trojan moons each forming the points of an equilateral triangle with it and Saturn, called Telesto and Calypso, Telesto being the leading member of the pair. Calypso is slightly larger but both are roughly the size of the Isle of Wight. Remarkably, even though both were discovered in 1980, it wasn’t the Voyager probes what did it, but telescopes on Earth. They were originally known as Tethys B and C. I didn’t know about them at the time, although I did know about Dione B, which is another story.
As befits a moon in orbital resonance with Mimas, Tethys too has a proportionately enormous impact basin. Since it’s more than twice the diameter of the inner moon, Odysseus, the crater, is itself four hundred kilometres in diameter, which is larger than the whole of Mimas and forty percent of the diameter of Tethys, making it proportionately the biggest crater that actually still looks like one on any moon. Unlike Herschel on Mimas, the floor of the crater does conform to the spheroidal shape of the moon, meaning that it has little influence on the distance to the horizon. The floor is three kilometres below the mean radius and the rim five kilometres above it, making the edge of the crater almost as high as Mount Everest above sea level, except that in the case of the mountain it rises from a plateau and would therefore not appear to be anything like as high. Nepal is on average already three kilometres above sea level. Moreover, this is a ring around 1 260 kilometres in circumference. In the centre of the crater is a plateau called Scheria Montes around three kilometres high with a basin in its own centre. There are faults around the rim, of which the largest is called Ogygia Chasma.
Even though the proportions of the craters to the moons are similar in both cases, it’s not Tethys but Mimas which has been called the Death Star Moon. This is because Herschel on the latter is relatively speaking a deeper dent than Odysseus. When I first came across Tethys, I’d just been impressed by Herschel’s size, so I was amazed that this second crater was bigger than the whole of Mimas and it is initially puzzling that it’s Mimas which gets all the kudos, but the reason is that Odysseus is smoother and flatter. However, Herschel is centred on the Mimantean equator whereas Odysseus is centred at around 35° north, so it’s actually off-centre in the same way as the Death Star’s depression is. It’s thought that when the crater originally formed, it was deeper but the relative softness of the surface and the higher gravity led to it being smoothed out as the millennia went by. The surface gravity on Mimas is 0.6% of Earth’s, whereas that of Tethys is more than twice that at 1.4%.
Although the gravity is greater, it was formerly thought that the crack across the middle of Tethys was a sign that the entire moon had been shattered by the impact and had fallen back together again. This is known as Ithaca Chasma, and at this point readers of the Iliad and Odyssey will have detected a theme to the names of the features: others include Polyphemus, Ajax, Circe and Penelope. Ithaca probably looks something like this:
Ithaca stretches three-quarters of the way around the world at 2 000 kilometres and is situated at a great circle centred on Odysseus and crossing both poles, interrupted by the crater Telemachus, so it might be thought that it’s connected to the giant crater, but remarkably it’s been found to be coincidental. The relative ages of features on many bodies with little to no atmosphere can be estimated by how cratered they are, and by this method Odysseus has been established to be younger than Ithaca. It was there already. I find this quite a remarkable coincidence, but a crater of that size seems to stand quite a good chance of being aligned with such a feature due to its large size. It’s 20° from the centre of the circle outlined by the chasm, and allowing for that on the surface means it would either be in the hemisphere on one side or the other of the moon from it, which doubles the probability, and allowing for 20° means the area which could be seen as the centre of the circle actually covers sixty degrees of 180, raising the probability to more than one in ten, and there are more than ten round moons orbiting Saturn so it becomes a lot less noteworthy that way. It’s an interesting demonstration of how misleading intuition regarding probability can be.
The chasm is about three kilometres deep and up to a hundred wide, though it varies a lot down to just a few kilometres. It seems to have been caused by the expansion of ice on freezing when the internal ocean froze early in the history of the moon, although it might have resulted from early tidal heating from Dione, which is in 3:2 orbital resonance with it.
The fourth-largest crater is called Penelope, and is just north of the equator about a third of the way across the globe from Odysseus, and has a diameter of two hundred kilometres. It was the second largest known crater before the whole of Tethys was mapped. It’s named after the wife of Odysseus. Away from these two craters, the terrain is quite heavily cratered with an alignment parallel to Ithaca.
It’s Enceladus which makes Tethys so bright. Ice from the geysers on the other moon hit the surface, covering it in very bright material, particularly on the leading side, which is around 12% brighter. The darker hemisphere is about the same colour as the darker of Saturn’s moons and may be high in iron. There are likely to be other constituents than water ice on or near the surface but these are hidden by the ice and so it’s difficult to tell what else is there. The regolith, i.e. the “soil”, actually ice, on Tethys, is unusual in that it’s 95% empty, kind of like polystyrene foam, a situation I imagine is helped by the low gravity and caused by the steady deposition of small particles of ice gently resting on each other over millions of years.
The moon is slightly redder and brighter near the centre of the leading hemisphere, bluer around Ithaca and somewhat darker red on the other side.
That’s about all I have to say about Tethys, which is incidentally about the same size as Ceres but otherwise quite different, being much icier. Next time, Dione.
