Planet Hamlet

Look here for an explanation of the post title. At least for this post I shall be calling this planet Hamlet rather than the silly name. So far as I know, nobody has ever called it that before and it may not function well as a viable official name, although I think it would. Although there may be issues of cultural imperialism, the character as portrayed in the play in question is in a sense global property. On a different note, it has an even lower population than a hamlet.

Hamlet used to fascinate me inordinately as a child, probably for two reasons. One is that it’s blue. In fact, Neptune is if anything bluer, the image above being false colour, but James Muirden the astronomer commented in his book that he definitely saw it as having a blue tinge even though everyone else seemed to see it as green. The border between green and blue seems to be more disputed than most colour differences, and it’s worth remembering that colour terms in other languages often vary, and also tend to occur in a particular order. I presume that Japanese calls the colour in question “青”, as does Mandarin (kind of). The other reason is that for whatever reason, Hamlet is the most obscure planet, being mainly used as the butt of jokes because of its name, which makes it intriguing and a target for the imagination. Hamlet is also only a little denser than water, and at the time of the 1930s (CE) encyclopædia I was getting my info from, its density seems to have been estimated as the same as water, suggesting to astronomers at the time that the planet was a globe of liquid. In 1977, I wrote a story called ‘A Holiday On Uranus’ about exactly that, set in 2177. I remember it fairly vaguely, but in it Hamlet was inhabited by intelligent fish-like beings living in its vast ocean and there was a security scanner used at the spaceport which used terahertz radiation to reveal the surface of the body in clothed people, which was eventually invented for real. Travel to the planet was at near the speed of light. I also imagined slavery in the Saturnian system and cruel and oppressive measures being taken to modify the bodies of Saturnians to make it impossible for them to rebel in an analogy to the Atlantic slave trade. I still have it somewhere I think.

At that time it was still possible to project one’s imagination onto the outer Solar System in such a way, although my view was clearly influenced by the fact that most of what I’d read about Hamlet had been written in the ’30s. Also, in one of those odd random associations one gets as a child, Bing Crosby’s ‘Little Sir Echo’, about a personified echo who was “ever so far away”, always used to make me think of someone living there, and I even went so far as to calculate how long it would take sound to travel the distance from Earth to the planet and back, which is around five and a half centuries. I also imagined a steam locomotive travelling there, which would probably take about a millennium, though that’s a guess. It strikes me that all my imaginings about Hamlet were extremely outdated even for the time I was making them.

Back in Stapledon’s day, and he was chiefly active in the 1930s as far as popular fiction was concerned, the giant planets weren’t considered to be gas giants, but extremely large rocky planets with thick and deep atmospheres. Consequently he was able to imagine Neptune in particular, and also to a limited degree Hamlet, as planets inhabited both by native life and the descendants of life from Earth, and given the increased radiation from the Sun æons in our future, Hamlet has agriculture at its poles, the equator being too hot, suggesting that at that point its peculiar rotation had yet to be discovered.

This brings me to the first real point about the planet: it “rolls around” on its side. Hamlet does not rotate “upright” like most other planets. It doesn’t even rotate at a somewhat tilted angle. Instead, each pole spends a season of the seven dozen-year long orbit pointing towards and at another time away from the Sun, as its axial tilt is 98°. This means that for most of the surface, with the exception of the equatorial region, there are forty-two years of daylight followed by another forty-two years of night. Hamlet does, however, rotate properly every seventeen hours, so at the equator it would have a normalish day with sunrise and sunset. This zone is about fourteen thousand kilometres wide. If it was much closer to the Sun, this peculiar arrangement would lead to very extreme seasons, but Hamlet is actually colder than the next planet out, Neptune, at -224°C. It has the coldest average temperature of any of the planets in the system. This anomalous situation is thought to be caused by the same incident which tilted it so extremely. It’s believed that a major impact or close encounter between a massive object and Hamlet knocked it onto its side and stirred up its atmosphere to the extent that the warmer layers nearer the centre of the planet, where the temperature is about 5000°C, ended up circulating towards the cloud tops and radiating the heat which in other gas giants is insulated from space by thousands of kilometres of not very conductive fluid. It might be thought that the reason is that half the planet is in darkness for forty-two years at a time, but this is not in fact the reason. Hamlet is so far out that it doesn’t really make as much difference to the temperature, and like many outer worlds the internal heat is a major contributor to the climate and weather. However, Hamlet is smaller than the two inner gas giants and has no significant tidal forces to generate heat, so it would in any case have a much cooler interior even without the incident which stirred it up.

When he discovered the planet, William Herschel thought it was probably a comet. It’s remarkable in being the first planet to be consciously discovered in historical times. There is a sense in which Venus was discovered when it was realised that the Morning and Evening Star were identical in the thirteenth century, which also led to it being given that name because the Morning Star was dedicated to the goddess, but an entirely new planet had never been discovered before. Remarkably, Herschel lived to the age of eighty-four, which is the same length as Hamlet’s year. Asteroids began to be discovered about twenty years later. The planet often seems to be passed over. For instance, there are relatively few works of SF which feature it. One exception is Fritz Leiber’s ‘Snowbank Orbit’, a 1962 short story in which the spaceship Prospero ejected from the inner system by an explosion in a battle attempts a slingshot orbit around Hamlet to bring it back inward. This was before such a manœuvre had been attempted for real as far as I know, but is now common, though not round the planet in question. Leiber tends to focus on Shakespeare, so his inclusion of Hamlet in that tale is probably due to its own naming theme. I haven’t read it all, but suspect that the planet only really participates in the plot as a distant “roundabout” rather than a planet in its own right. To be fair, so little was known about the place back then that it might not have had much opportunity to be anything else, although it’s all about imagination and Leiber was substantially a sword and sorcery author as much as an SF one. Cecelia Holland’s ‘Floating Worlds’ novel does have it as a proper location though. I actually owned that book for decades but never got around to reading it before I ended up giving it away, so I can’t enlighten you on its content.

The key concept here, then, seems to be that Hamlet tends to be ignored to a much greater extent than other planets, except for the obvious occasional puerile comment. Is this fair? Is it just that the silly name puts people off taking it seriously, or is there something about it, or perhaps all the other planets, which lends itself to being ignored? Is it the Basingstoke of the Solar System? Come to think of it, is Basingstoke really that boring? Am I being unfair? All that said, Hamlet as a planet, as opposed to our relationship with it, is indeed unusual because of the fact that it orbits on its side, if for no other reason. It’s also the first planet to be found with rings after Saturn, within my lifetime in fact, and its rings are notably different to Saturn’s, being darker, thinner and more widely spaced. Its moons are, uniquely in the Solar System, not marked by any outstanding features. Neptune has the kudos of being the outermost planet if Pluto isn’t counted as one, and for twenty years at a time Neptune really is the outermost due to Pluto’s peculiar orbit. Neptune also has unusual moons and the fastest winds in the system, but I’ll deal with all that when I come to it.

It is, however, worth comparing the two worlds, as they’re probably the two most similar planets in the Solar System. I’ve kind of been here before. Both are roughly the same size, very cold, the same density and have similar day lengths. They also have similar colours and compositions, and their size and density dictate that their cloud top gravity is similar. Although Hamlet is the colder, the difference is only about ten degrees, bearing in mind, however, that ten degrees is a bigger difference at such a low temperature than it is at room temperature and more like a difference of thirty degrees for us.

Here’s the picture I posted last time:

This is Hamlet as it looked to Voyager when it got there in ’86. The equinox occurred in 2007 so this is something like twenty years off from that, a quarter of a “year” or so away from that point. It’s exceedingly featureless and fuzzy looking, unlike the much clearer and more vivid Neptune:

It’s possible that the haze in the atmosphere of the closer planet is seasonal, but this rather uninspiring view is enough to make one understand why it tends to be ignored. After all, just imagine if a space probe costing millions had been dispatched all the way to the place and it had come up with nothing but for the greenish cueball image shown above. Fortunately, Voyager visited all four gas giants and is to date the only spacecraft ever to have visited either Hamlet or Neptune. It took four and a half years to travel the distance from Saturn to Hamlet and at the time it got there, January 1986, the planet was invisible to the naked eye. Hamlet dips in and out of visibility because of its distance and orientation, but is bright enough to be visible as a faint “star” some of the time to people with good eyesight who know where to look. In order to get a good look at Titan, Voyager 1 had manœuvred itself out of the plane of the Solar System and visited no planets after Saturn in late 1980, but Voyager 2 went on to cover Hamlet and Neptune. This means, of course, that the planet didn’t get as much attention as the previous two in any case. There were also imaging challenges. The rings are as dark as coal and the moons are not only dark but also dimly-lit compared to Jupiter’s and Saturn’s. Moreover, the velocity with which Voyager 2 moved through the system marred many of the images with motion blur. This brings up an important issue often raised by conspiracy theorists about NASA. Images taken by space probes are, as far as I know, always processed from the raw form in which they’re received, for this kind of reason. There may be too much or too little contrast, and in this case the problem was that the blur had to be filtered out. I have little idea regarding how this was done, as I would’ve thought that blurring would mean that some features would have obliterated others completely owing to brightness, but maybe not. I do know it seems impossible to get rid of a different kind of blur with processing in that way, namely when things are out of focus, because otherwise an out of focus image could be drawn which would appear to be in focus to someone with myopia, and that doesn’t happen, I’m guessing because of entropy. However, motion blur is not the same thing. Techniques of processing the blur have also improved since 1986, so it’s been possible to extract new information from the data received at the time. In the case of Hamlet I’m tempted to say that it hardly matters because so little detail is apparent, due not to motion blur but the basic appearance of the planet itself.

Another aspect of Hamlet’s appearance is that for human eyes the green-blue colour tends to dominate and make details hard to see. This is similar to the way a clear daytime sky on Earth, so to speak, looks bluer than it really is to many people. This sounds like nonsense, but I have to interject a personal note here that I don’t actually see the sky just as blue, and this is an issue which has come up repeatedly and I haven’t been able to resolve satisfactorily. When I look at a cloudless blue sky in broad daylight, I see large purple “splotches” all over it. These are not directly linked to my vision because they stay in the same parts of the sky when I look around, so it isn’t a question of glare creating an optical illusion due to the blood in my retinæ. It may be connected that in fact the Rayleigh scattering responsible for the bluish colour of the sky isn’t confined to blue wavelengths but actually affects indigo and violet light even more, and I suspect that what I’m seeing is uneven scattering of these higher frequencies. I don’t know why I would notice this more than other people. I wouldn’t go so far as to say that I see the sky as purple or indigo, but it definitely doesn’t look merely blue to me, and for some reason nobody else has ever mentioned this, so I presume they don’t or can’t see it. Nonetheless, if the human eye were equally sensitive to all wavelengths of visible light, the sunlit sky wouldn’t look blue to anyone but more indigo.

I’ve never seen Hamlet with a telescope or anything else, but only via images processed imperfectly for human colour vision. Through violet, orange and red filters, the globe is banded in the same way as Jupiter and Saturn are, though more subtly. The green and blue colour of the atmosphere, however, drowns this out to the unaided human eye. I’ve previously mentioned conspiracy theorists in connection with the question of NASA image processing. Flat Earthers would have the same problem explaining models of Hamlet’s atmosphere as Titan’s, because of the dominance of the Coriolis Effect. Hamlet is very cold indeed, unlike Jupiter and Saturn has only a weak internal heat source, and unlike all other planets in this system orbits on its side. This means that models of its atmosphere correctly show the movements of clouds in a counterclockwise direction dominated by the Coriolis Effect. Note also that these models do not depend on the actual existence of the planet itself, since they’re merely an extrapolation of what happens in a fluid body of Hamlet’s character. The movements are dominated by the movements of the planet itself and not by heat from inside or outside, in spite of the fact that entire hemispheres are daylit for forty-two years at once while their antipodes are nocturnal for the same period, and it might be thought there would be a big temperature difference driving the winds, but there isn’t. This is difficult for flat Earthers to explain because of the rotation of weather systems in our own atmosphere being clockwise on one side of the Equator and counterclockwise on the other.

Hamlet has a number of unusual features which are difficult to explain simply. It rotates on its side, the magnetic field is neither oriented towards the poles or particularly away from them and originates from a location about a third out from the planet’s centre. It’s also colder than expected, and the moons are unusual as well. The most popular explanation is that a roughly Earth-sized body collided with the planet and still has much of its material within it, knocking Hamlet off its axis, changing its composition and causing the formation of carbon monoxide from some of the methane, in other words burning the atmosphere via incomplete combustion due to low oxygen level. Although this is also used to explain the strange magnetic field, I don’t know the connection. Maybe no-one does. This peculiarity also means that unlike any other known planet, Hamlet’s auroræ are equatorial rather than polar, although they do occur around two localised areas on opposite sides of the equator.

One thing I seem to have been right about is that Hamlet contains a vast water ocean, although it is mixed with ammonia, altering its freezing point. Of Neptune, a rather similar planet in many ways, Olaf Stapledon once said, “. . . the great planet bore a gaseous envelope thousands of miles deep. The solid globe was scarcely more than the yolk of a huge egg”. Hamlet and Neptune are by far the two most similar planets in the System, and this is equally true of both. A major fact about both which is almost completely ignored is that it rains diamonds. What happens is that methane is compressed, squeezing out the hydrogen and causing the carbon left behind to form into diamonds under the extreme pressures. These then fall through ever-hotter layers towards the core, where they vapourise, bubble up through the ocean and recrystallise at the top. This also means there may be “diamond-bergs” floating on the ocean. I used the tendency for gas giants to form diamonds in this way in my novel ‘Replicas’, where diamonds have become a monetarily worthless byproduct of the deuterium and helium-3 mining industry on those planets. ROT13’d text spoiler: Zryvffn raqf hc bjavat n qvnzbaq znqr sebz ure cneragf’ erznvaf, fuvccrq onpx ng terng rkcrafr sebz Nycun Pragnhev gb Rnegu, juvpu vf cevpryrff gb ure ohg nf n cenpgvpny bowrpg vf cenpgvpnyyl jbeguyrff. https://rot13.com/. The diamonds may also be floating in a sea of liquid carbon. If this is so, or if there’s a whole geological layer of diamond, it could explain why the magnetic field is so different.

It takes over two and a half hours for a radio signal to pass between Hamlet and Earth, and the round trip is of course twice as long. Voyager 2’s transmitter is about as powerful as the light bulb in a fridge at 23 watts. This is stronger than a mobile ‘phone signal but way weaker than most radio stations. It works over such a long distance because the dishes used are aimed directly at each other, the frequency is free of interference by other human-made signals and the antennæ are very large. This could’ve been mentioned at any point in a number of my recent posts, but it may as well be here. In the case of Hamlet, this single spacecraft is responsible for practically everything the human race knows about the planet, and it relies on that tiny gossamer thread of a radio signal sent in the mid-’80s from two light hours away by a transmitter as weak as a dim filament light bulb. The initial baud rate was about 21 kilobaud, reduced in the end to a mere one hundred and sixty bits per second. They’re pretty amazing ships.

The Voyager mission to Hamlet was overshadowed by tragedy. Its closest approach took place on 24th January 1986, when I was at the height of my arguments with the fundamentalist Christians I met at university (that is relevant, as you’ll see). The Challenger disaster occurred on 28th, and was reported some time in the afternoon. I first heard of it as I was queuing for dinner at my hall of residence, and the kind of “head honcho” Christian student responded that it was “good” because it would persuade people to focus on and spend money on more pressing things. Whereas that’s a common and valid opinion I happen not to share, there’s a time and a place, and I get the impression he was saying that for shock value, which doesn’t seem very Christian by any internal standard. That, then, is my abiding memory of the Challenger disaster, and regardless of the value or priorities of NASA’s Space Shuttle program, the fact remains that seven people lost their lives that day, and of course anyone’s death diminishes us all.

A tangential result of Challenger was that it eclipsed the news from Voyager 2. It was also intimately connected with it in that NASA was inundated with letters requesting that the newly discovered moons be named in memory of the Challenger astronauts. This didn’t happen, even through coincidental Shakespearian characters having the same names. It was a factor in this naming proposal that there was a teacher on board, as many people who were children at the time were watching the launch live on TV due to this connection. It’s also a little-known fact that NASA almost sent Big Bird of Sesame Street, in character, on this flight. In 1988, the IAU, an organisation I currently like less and less the more I hear about it but maybe I’m being unfair, and it is after all an organisation and those are usually bad in some way, voted not to adopt the names of the astronauts for moons because they weren’t international enough. This might seem to make some sense until you consider that they’re actually named after Shakespearean (sp?) characters, which are of course associated with England, so their decision didn’t actually make much sense. However, at least some craters on the far side of Cynthia got named after them.

Hamlet has rings. Although they seem quite different to Saturn’s from a distance, close up pictures are hard even for experts to distinguish between at first glance once the image’s dynamic range has been boosted, because they show the same ringlet structure and there are also at least two shepherd moons, Ophelia and Cordelia. The rings are labelled using Greek letters and numbers, apparently without particular regard to their order. From inner to outer they’re referred to as ζ, 6, 5, 4, α, β, γ, δ, λ, ε, μ and ν. I presume this anomalous order is connected to their order of discovery because the way I remember them from the early ’80s they were named from α to ε. This also seems to continue the tendency to call things to do with the planet odd names, as it seems more logical either to number them or give them letters but not mix the two. The outermost two are red and blue respectively and the rest are dark. The first five, α to ε, were discovered on 10th March 1977 when the planet crossed in front of the star SAO 158687 and it blinked on and off regularly on either side of the planetary disc. However, a ring had been reported much earlier, by William Herschel, although this may have been imaginary because they’re very dark. The ν (Nu, not “Vee”) ring is between the moons Rosalind and Portia, so they also count as shepherds. The fact that most of the rings remain very narrow but don’t have shepherds is unexplained. Before their discovery, only Saturn was thought to have rings. After Jupiter was also discovered to have a ring in 1979, the question was whether Neptune would be the odd one out in lacking them. From that point onward, I assumed Neptune had them. Nobody knows what they’re made of, except that they can’t be ice, because their colours are unusual and don’t yield definite spectra to go on. Their darkness suggests they’re carbon-rich, and in conjunction with the probable diamond-bergs and liquid carbon ocean show that Hamlet is well on its way to being a carbon planet.

Most of the light is reflected by the ε Ring, which is also the most elliptical and the one closest to the equatorial plane. It’s brighter in some areas than others due to that eccentricity and varies in width. It’s possible that this variation translates into arcs – curves – rather than rings for other planets, perhaps orbiting other stars, or maybe Neptune. I can assure you that by the time I come to Neptune I will know if this is so. This is the ring with the first discovered pair of shepherds. The next brightest rings are α and β, which also vary in width, being widest 30° from their furthest points from Hamlet and narrowest 30° from their nearest. It’s probably coincidence that these angles correspond to those of the planetary magnetic field, or if not, something to do with a similar but separate dynamic process. Both these rings are somewhat tilted and are ten kilometres wide in some places, which raises the issue that they were detectable from three milliard kilometres away even though they were smaller than the Isle of Wight. The γ Ring (I’m just going to deal with these in alphabetical order, which means mentioning the 1977 ones first) is narrow, almost opaque and thin enough to make no difference to stars crossing when it’s edge on. This also means it isn’t dusty. The inner edge particles orbit six times for five of Ophelia’s orbits, so there seems to be a relationship there. As for δ, it’s circular, slightly tilted and may contain a moonlet because it seems to have waves in it. It has a more opaque and narrower outer part and a wider and more transparent inner side, which seems to be dustier.

Before Voyager 2 got there, the team who discovered these first five rings found a further three rings by the same method. For some reason these are known as 4, 5 and 6 even though five were already known by that point and there was a Greek letter naming scheme going on from the same team. I don’t understand this, but there it is. Voyager 2 found another two, fainter, rings, the naming scheme going back to Greek letters, and in this century the Hubble Space Telescope found two more. Rings 4, 5 and 6 are up to dozens of kilometres away from the equatorial plane and are inner and fainter to the ones discovered in ’77. They’re also narrower and don’t occult starlight edge-on. The μ Ring is blue and contains the moon Mab, around which it’s also brightest so the chances are it’s made of bits of that moon. These rings are dusty. Finally there’s 1986U2R, because of course it would be called that wouldn’t it?

The rings don’t form a stable system and given what’s known about them should disperse within a million years. However the fact that all the other gas giants have rings suggests either that having rings is normal for such planets or that they’re temporary but very common. Hamlet’s system generally, including the moons, is not so dominated by ring-related factors as Saturn’s although there are several harmonies, operating between small inner moons and the rings rather than the larger classic moons observable from Earth. A moon the size of Puck would be enough to provide the material for the rings, and Mab is actually currently breaking up and forming another ring, so it isn’t that peculiar. There are probably moonlets up to ten kilometres across within each of the rings. I presume the dimness of the sunlight out there combined with the darkness of the satellites and other material makes them harder to detect optically than small moons of Jupiter and Saturn.

Getting back to Hamlet itself, it’s methane which gives it that colour, but the atmosphere is in fact mainly hydrogen and helium like the other gas giants. It’s the second least dense planet and has a cloud top gravitational pull of only 89% of our sea level gravity. There are four layers of cloud corresponding to increasing temperature and atmospheric pressure. At slightly above sea level pressure, there are methane clouds. Considerably further down are the deepest clouds which have been actually observed, where the pressure is equivalent to the Earth’s ocean’s sunlit layers’, and are made of hydrogen sulphide. Appropriately for the planet’s official name, these would stink of rotten eggs. These share the layer with clouds of ammonia, which has an acrid, stinging odour. Below that is ammonium hydrosulphide, and finally, at a level where the pressure is equivalent to about four dozen times our sea level pressure, there are clouds of water vapour. The atmosphere is probably the most featureless of any solar planet’s, but does show the occasional white cloud, as can be seen in the photo at the top of this post. It’s also quite clear compared to all the other gas giants’, Titan’s and Venus’s, though not ours or the Martian one. I would expect there to be a level where one would find oneself completely surrounded by blue-green with various species of cloud. There are also traces of complex hydrocarbons as would be found in mineral oil and natural gas on Earth. Unlike other collisional atmospheres, Hamlet lacks a mesosphere, which is normally found between the stratosphere and thermosphere. There is a hydrocarbon haze in the stratosphere.

The chief distinguishing feature of Hamlet’s atmosphere is its featurelessness. Voyager 2 only detected ten clouds over the entire planet as it flew past. All the other gas giants have more stuff going on in theirs, and this is probably why it took so long to work out its rotational period of seventeen hours. There is a whiter polar cap from around half way between the equator and the poles, which swaps over between north and south as the orbit wears on. Voyager 2 was unable to observe the northern hemisphere because it was night there when it passed, so not only has Hamlet only been visited once but also half of it hasn’t been observed close up at all. In the decade or so after Voyager left, things started happening in its atmosphere but of course they couldn’t be seen as well as they would’ve if they’d taken place when it was there. I feel like there’s a kind of theme emerging here. Also, astronomy has only been advanced enough to make much meaningful sense of what’s going on since the 1950s, which is less than an entire orbit ago, so a whole cycle of seasons has yet to be observed. There has been a dark spot like the one on Neptune, and there are thunderstorms. It’s also possible that there’s a convection layer blocking the internal heat from the outer reaches of the planet.

So that’s Hamlet, such as it is. Next time I’ll be talking about its moons. I have two questions for you though. Did you feel that avoiding the name “Uranus” made you feel differently about this planet? I’m not sure about calling it “Hamlet” either, but that does at least circumvent the issue. Could you think of a better name or is it a bad idea to fixate on it so much?

Cobalt

Many names of the chemical elements are monotonous. Some have a system imposed on them, such as the halogens, which all end in “-ine”, and the noble gases excluding helium, which all end in “-on”, but other elements also have that ending such as boron and silicon. Oxygen, hydrogen and nitrogen seem to have the start of a system, but it turned out to be flawed with oxygen, which is so named because it was thought to be responsible for acidity, Greek οξυς, but that turned out not to be so.

Element names with no classical component were usually discovered a long time ago because they are both easily observed and occur in their pure form, such as gold or silver, or because they’re easily extracted, often by heating with carbon. Hence there’s iron, copper, zinc, tin and lead, and among the non-metallic elements carbon and sulphur. Further afield, there are some elements with names derived from German or Swedish, such as nickel, bismuth and cobalt, and of course it’s this last which I’m going to talk about today.

Around five centuries ago, miners in present-day Germany came across an ore which appeared to contain a metal. However, it wasn’t possible to smelt it by the usual means and when they attempted to do so it gave off toxic fumes which killed a lot of the people doing it. Consequently they named it after their word for “goblin”: Kobold. “Goblin” isn’t an exact translation due to differences between English- and German-speaking folklore, but it’s more or less right. The next element in the row, nickel, has a name with a similar history, being a shortened version of “Kupfernickel”, “the devil’s copper”, because its ore failed to yield copper. Nickel as in “Old Nick”.

Being an odd-numbered element, 27, Cobalt is rarer than its even-numbered neighbours, particularly iron. It’s only the thirty-third most abundant element in Earth’s crust, and there are no common minerals which are specifically high in cobalt, so in a way it’s surprising it was sort of discovered so long ago and therefore isn’t one of the “-ums” or “iums”. It has the peculiar feature of being both highly toxic and essential to life, although it’s by no means unique in that way. For animals, cobalt is an essential element, but only as part of vitamin B12 or cyanocobalamin, a compound quite similar to the hæm of hæmoglobin fame but with a cobalt atom at the centre of the molecular ring rather than an iron one. Because I’m vegan and didn’t carefully watch my diet in the late 1980s CE, I have experienced B12 deficiency, which tends to manifested differently if you follow a plant-based diet. Folic acid tends to be high in such diets. Being named after the Latin word “folia” for “leaf”, folic acid is high in green vegetables and is involved in DNA synthesis, and therefore tends to mask the anæmia caused by the other deficiency, meaning that for people who don’t eat animal products the neurological features are more prominent or can even become fatal before there are any signs of anæmia. I found I got paræsthesia along the medial sides of my hands, which I did not get when I had previously had iron-deficiency anæmia fifteen years earlier (long before I was even vegetarian), I felt depersonalised, found my memory was impaired and had mild signs of Lewy Body dementia in that I mixed up dreams and waking life. I also hallucinated the smell of mint constantly and had no actual sense of smell, accidentally set fire to the bed due to that (couldn’t smell the smoke) and made some poor life decisions, which may not have been connected. Cyanocobalamin maintains the health of the myelin sheaths in the nervous system. I would say the psychosis resulting from its deficiency is more like ethanol-related psychosis than anything like schizophrenia or paranoia, and in fact I’d say it was closer to dementia than psychosis. I have not experienced the problem recently in spite of being vegan for quite some time, but I suspect I don’t absorb the vitamin as well as some other people due to my gastric lining being impaired in some way. It should also be noted that most cases of the deficiency have nothing to do with veganism, being related to malabsorption or the presence of intestinal parasites consuming the host’s food. No animals are known to produce their own cyanocobalamin, it being produced by bacteria. Its most prominent rôle in the human body is in red blood corpuscle synthesis. I won’t dwell on this too much because, as is so often the case, it belongs on one of my dormant blogs. I’m just saying that as a vegan who may have a less-than-ideal stomach lining, I’m acutely aware of the function cobalt has in my body from a practical perspective.

It’s also toxic. Although it’s unusual to be poisoned by cobalt in the usual run of events, some hip implants contain it and this is a significant cause. It can lead to mood swings, rashes, PTSD-like symptoms, problems with vision and tinnitus. If it comes in contact with the skin for protracted periods, it can cause a rash, and if particles of it are inhaled it can lead to pulmonary fibrosis and lung damage. Most of the last two routes describe a fairly common kind of reaction. Swallowing it will lead to nausea and vomiting, which is the elimination reaction to things which are not meant to enter the internal environment but still can, and because of this reaction cobalt poisoning by ingestion is often self-limiting. The same does not apply to implants such as hip replacements, which can’t be eliminated by the body and will therefore continue to provoke reactions and cause direct problems.

The metal is probably best known in the form of one of its compounds, cobalt blue. This is actually cobalt (II) aluminate, and is shown at the top of the post. As I mentioned yesterday, I don’t understand colour physics or chemistry but I’m aware that like some other transition metals, cobalt can form ions at different oxidation states and this influences the colour. The fact that this happens with chromium is the reason for its name – χρομα – colour. Consequently some cobalt compounds are a rich blue and others are purple or pink. Cobalt glass is of course blue:

As has been done here, herbal and essential oil bottles for use in dispensing are sometimes blue because blue is said to be a healing colour. In practical terms it may make sense to give patients blue glassware because it will be more likely to be returned rather than recycled, but all the glass bottles I’ve used have been brown. Cobalt glass is made by adding a cobalt compound to softened glass, nowadays often an oxide of cobalt or cobalt (II) carbonate, which tells you which oxidation state is blue, although older glassware would’ve used cobalt aluminate, which is quite ancient and was also used in pottery. Cobalt blue is the pigment our pottery teacher warned us about at school and explained why food and drink were banned in his classes, and was used in Tang dynasty glazes in Chinese ceramics. Its toxicity is not relevant when used in glass or finished ceramics, but it’s still interesting that blue is often seen as the antithesis of edibility, as in “there are no blue foods” (in fact there are, but they’re rare). This is also hard to reconcile with the idea that blue is a healing colour. The forger of Jan van Vermeer paintings van Megeren used cobalt blue paint in some of his reproductions, which enables those to be detected as fake.

Incidentally, a quite remarkably blue pigment was discovered about a dozen years ago consisting of yttrium, indium and manganese:

By Mas Subramanian – Mas Subramanian, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=49854366

Apart from also being composed of transition metals, this has little to do with cobalt but it’s worth a mention.

Cobalt is a useful catalyst, which in fact is how living things use it in cyanocobalamin. The not very nice sounding cobalt arsenide accelerates the electrolysis of water and becomes more efficient as it ages, making it useful in the production of hydrogen as fuel. This increase in efficiency is due to it becoming more porous as it goes on, increasing its surface area for reactions. It can also be used to convert syngas to liquid automotive fuel.

Cobalt chloride is quite interesting. It changes from purple or pink to blue depending on hydration. Cobalt atoms can bond by electrostatic attraction, meaning that they can link to up to six water molecules at once. Without water, cobalt (II) chloride is blue:

When hydrated, it looks like this:

This is the hexahydrate – six molecules of water per cobalt ion. Cobalt chloride paper is used to check for humidity and moisture because of this colour change. The compound is also one of several chemicals which can be used to make a chemical garden, although with copper sulphate, hydrous and anhydrous, and alum. These can be “planted” in a bath of aqueous sodium silicate, when they will proceed to sprout long projections:

This works because the silicates of the metals involved are less soluble than the original compounds. Unfortunately it’s hard to imagine circumstances where this could happen without intelligent intervention.

Photo by Pixabay on Pexels.com

A very sinister and unpleasant aspect of cobalt is the cobalt-salted nuclear weapon, conceived of in 1947 by Leo Szilard. It’s called “salted” because it resembles the ancient practice of salting the land by an enemy to prevent the production of food and cause famine. The idea was to surround a nuclear fusion weapon with a shell of cobalt which, when detonated, would spread cobalt-60 (having previously been cobalt-59 but hit by neutrons from the chain reaction) around a wide area, which has a long half-life and is a strong gamma ray emitter, gamma radiation being the most penetrative form of radioactivity from nuclear decay. This was to show that there was an apocalyptic risk from nuclear weapons, but it was not suggested that such a weapon would be built, merely that the technology being “out there” was an existential hazard. As far as is publicly-known, this has never been done. Salted bombs are kind of similar to dirty bombs but the fallout would be scattered over a much wider area, which would be uninhabitable for more than half a century afterwards. A small number of such bombs could wipe out the human race. The point was not that they actually be developed but to encourage nuclear disarmament, although there are rumours and leaks of something similar such as an underwater bomb to produce a radioactive tsunami.

Cobalt is also used in powerful magnets, although this function is largely superceded by rare-earth magnets now. The most powerful magnet of all, though, seems to be samarium-cobalt, whose other component is a rare earth element. I don’t understand magnetism in detail either, but I do know that apart from iron, only cobalt and nickel are ferromagnetic among the transition metals although several rare earth metals also are. Cobalt-samarium magnets retain their ferromagnetism at higher temperatures than other magnets with rare earth elements and are used in guitar pickups.

To close this off, this post was written in response to an AI program which suggested this title for a blog post among a list of about twenty others, all of which were for recipes. I have no idea why it was there but I hope it made for an interesting post. And this is cobalt:

By Alchemist-hp (talk) (www.pse-mendelejew.de) – Own work, FAL, https://commons.wikimedia.org/w/index.php?curid=11530303