Where Are All The Aliens (Part II)?

Last time I decided to write a summary of the various common suggestions which have been offered to explain how in such a vast and old Universe with so many stars in so many galaxies which have planets apparently suitable for life as we know it here on Earth, we aren’t aware of the existence of any aliens. However, after writing ten thousand words on the subject I realised I was going to have to divide it up into smaller bits, so here’s the other half, which like the way intermissions usually occur more than half way through something, is probably going to be shorter than the first half, which covers eleven reasons. Here I plan to cover another ten, so it seems it will work out the way I said! If you want to know how this starts, such as with the Drake Equation, read the first bit of the previous post.

Anyway . . .

Too Expensive To Travel

It might at first look a bit weird to talk about money with aliens, because maybe they haven’t got any or even the concept of money, but in one idealised form economics is about work adding value to things, and that amounts to energy use. Therefore the idea of it being too expensive to travel to other star systems isn’t really based on money so much as the idea that somehow you’ve got to lever yourself into space and ping across interstellar space at amazing speed, and to do that you’re going to have to apply major force to the other end of the lever. This is not economics based on market value either, but on the sheer amount of work that has to be done to achieve this goal.

The Apollo missions simply involved transporting three people and some equipment to our natural satellite at a distance of only ten times the circumference of our home planet, which at the time was routinely circumnavigated by airliners. I don’t mean to diss the achievement by any means, but it’s important to bear in mind that in comparison to going to Mars or Venus it’s only a short hop. Venus, at its closest approach, and it’s also the closest planet to Earth, is, as the rhyme has it, “ninety times as high as the Moon”. It took an incredible amount of effort and risk even to make that relatively short trip. The Apollo program cost $25 800 million, which adjusted to 2020 prices is over a quarter of a billion US dollars. There was plenty of criticism about the cost, exemplified by Gill Scott-Heron’s poem ‘Whitey On The Moon’:

However, it’s also been calculated that the cost of the American space program over that period per annum was less than the total expenditure on lipstick over the same interval. This is a relatively patronising and possibly sexist observation to make, but when I consider how much I spend on lipstick, I’m really quite poor yet I hardly notice it. My lipstick budget is minute. Bear in mind also that it’s realistic to halve that as expenditure per adult, because it’s much more common for women to buy lipstick than men. The cost of the Venus-Mars mission at the turn of the 1970s-1980s CE decade would have been $80 thousand million at 1971 prices, and would’ve sent only one mission, though to two planets. That cost would’ve been close to a long scale billion dollars in 2020 terms. However, the entire Apollo program is only slightly more expensive than Trident, a benchmark I always use to assess what governments consider worth spending money on, so in fact Apollo didn’t really cost that much. Moreover, the money would’ve gone back into the economy and its possible to build on what’s already been achieved. One problem with going back is that it’s a bit like repairing a video recorder. The old equipment is no longer sufficiently integrated – “you can’t get the parts” – and much of the expertise is no longer available because of retirement, deaths and deskilling through not using the relevant talent. Even as it stands, NASA reused much of their stuff. Skylab was based on a Saturn V stage and the Apollo-Soyuz Test Project used the Apollo Command Module. That said, it’s true that much of the paraphenalia were designed only for one purpose: to get astronauts there, land them and get back. The Apollo XIII LEM, for example, was incinerated on re-entry without being used, so it wouldn’t be suitable for landing anywhere except on its target. For instance, it would have been destroyed even by the Martian atmosphere.

The cost of space travel may be deceptive. I think it was one of the Ranger probes which only made it a third of the way to Cynthia but had expended 98% of its fuel to get there, meaning that just another two percent would’ve been sufficient. We’re used to an environment where Newtonian physics is obfuscated by the likes of friction, buoyancy and a substantial atmosphere. Take all those away and things become much simpler. Certain things are no longer necessary, such as constant input of energy to retain a constant speed. Therefore, fuel requirements are not so high once a vehicle has left our gravity well, although gravity’s range is infinite.

It’s been calculated that the Orion starship, which could accelerate up to five percent of the speed of light, would have cost $367 thousand million 1968 dollars. Dædalus would cost $6 long scale billion in 2020 prices. That’s the current price of reaching the nearest star within three dozen years with an uncrewed vessel. However, economies of scale are likely to be involved to some extent, as they would’ve been if the Apollo program had concentrated more on making its equipment and vehicles reusable. Even as it was, it was to some extent feasible to re-employ them, as I’ve said. But if NASA had designed some kind of more general-purpose landing vehicle, they could’ve saved a lot of money further down the line. There’s a kind of disposable short-termism to that decision.

Economics in this context needs to be re-cast because it’s a big assumption that aliens would have money. What it actually amounts to is work and energy use, but it’s still an issue because there’s usually going to be some energy cost when value is added to goods. Fuel is a good way of illustrating this. I don’t know for sure but I suspect the hydrogen and oxygen in the Saturn V fuel tanks were produced by electrolysis, and that electrical current had to be generated somehow. Likewise, the plan to use a powerful laser to push a solar sail and accelerate a spacecraft to near light speed would have to power the laser. That said, things change in space compared to an Earth-like planet, because here energy is relatively hard to harness but there is abundant matter, but in space it’s the other way round. Energy is freely available, from solar radiation and slingshot manœuvres around massive bodies, but most matter is rare. This means fuelling a spacecraft would be relatively cheap, and one suggestion for Dædalus, for example, was to use hydrogen and helium from Jupiter for the hydrogen bombs needed to propel it. It’s possible that ETs would manufacture their materials from hydrogen and helium using processes initiated by solar power or gravitational methods of capturing energy, and this too would make materials relatively “cheaper”.

In terms of recompense, there are different kinds of economy even among humans in the richest countries. Not only is there barter, which may not have been as widespread as often imagined, but also the likes of a gift economy, where people are expected to give presents at Xmas and birthdays. Gift economies also function on a larger scale: the long-term “loan” of pandas by China to other countries springs to mind. Large engineering projects have also been “funded” in other ways than money. Contrary to popular belief, the Egyptian pyramids were not built by slave labour but by workers giving their work for free in lieu of taxation, and various organisations today also run on volunteer work. There’s also the possibly rather sinister social media-style reliance on reputation to get people to do things, as depicted in ‘Community’ and ‘Black Mirror’, and functioning to a vast degree in China, where one unlocks access to various facilities by improving one’s reputation in the eyes of the government. This seems disturbing to many Westerners, but in fact it’s not that far from what we’re doing all the time here in a different way, such as by wanting likes on Facebook. A whole economy could be run that way, and we don’t even know if aliens exist, so we know even less about whether they have other ways of doing things than money, but there’s no reason to assume that’s how they run their societies if they do exist.

A significant barrier to human space travel is quite possibly democracy in the way we understand it in liberal democratic societies. The Apollo program was shortened and cut down due to the Nixon administration, and large long-term projects generally can be delayed or disappear entirely because of short governmental terms. It’s difficult to imagine America or Europe being able to build pyramids, simply because the project is too long and “expensive” in terms of labour to function well, plus we’d be doing something like building a monument to President Truman or Ramsey MacDonald, neither of whom we consider to be divine. This system, which may be temporary for various reasons, could seriously delay space programs elsewhere in the Galaxy. It could also mean that the kind of civilisations we could end up making contact with would not be democratic in that way because such societies would have stayed on their home worlds due to the difficulty of sustaining such projects. Among humans here, the idea of liberal democracy is restricted to certain countries and there is no tradition of it in many others. This, in a sense, is the Space Race writ large, because the idea of the Apollo program was largely to attempt to prove that liberal democracy functioned better than “communism”, as the Soviet system at the time was imagined to be. But it may turn out that the US won the battle but has lost the war if we ever encounter other technology-using life. This needn’t be a bad thing, because there’s totalitarianism, but also other options such as post-scarcity society.

To summarise, I don’t think money, or money translated into energy use, would hamper progress towards interstellar travel as such, but the political constitution of alien societies might. On the other hand, a society probably would want a return on its investment, and that could involve making interstellar travel tangibly beneficial to the home world, which could be difficult. Maybe there’s just no profit in it.

Zeta Rays

I’ve mentioned this before, but it’s worth going into again here to collect possible answers to the Fermi Paradox into one place. The first deliberate use of radio on this planet among humans only occurred towards the end of the nineteenth century. Analogue switchoff began little over a century later and although we still have analogue radio we don’t use it much. Of course, that doesn’t mean radio transmissions have stopped. It just means they are now usually encoded to carry digital signals. The more efficiently a signal is encoded, the closer it looks to random noise to someone who doesn’t have the key to decode it. Moreover, for all we know there may be a much better way to transmit signals than electromagnetic radiation just around the corner. This leaves us with the situation of trying to detect analogue radio transmissions from other star systems when we ourselves only used them for about a century, or a fiftieth of our history. Now suppose we are in existence as a civilisation for a total of twice the length of recorded history, or ten millennia. One percent of our time will have been used in this way. Taking Asimov’s estimate of 530 000 civilisations in the Galaxy, that would mean only 5 300 of them would be using radio waves in this way at any one time It’s actually far less because Asimov’s estimate was that the average suitable planet would support technological species for ten million years, although that’s assumed to be about ten evolutionary “cycles” of intelligent life, meaning that the closest civilisation currently doing this would be around a thousand light years away by the lower estimate but by the higher there would only be about four dozen in the entire Galaxy right now and at least four thousand light years away, which in turn means that every civilisation could have stopped listening by the time its signals were received. Also, it’s a myth that routine radio transmissions are easily detectable from other star systems. It’s been estimated that our own couldn’t even be picked up on Proxima B. A deliberately focussed transmission is another matter entirely though.

It was Jill Tarter who came up with the “zeta ray” statement and it’s been considered scientifically naïve on the grounds that physics is almost complete and the Standard Model does not predict the existence of any useful means of exchanging signals which is better than electromagnetic radiation. There can be no useful superluminal travel, for example, and although radio waves might not be ideal, the best frequency may well be visible light, and we more or less know that isn’t being used, at least indiscriminately. However, I think this objection takes Tarter’s claim too literally, because in fact she was probably saying that a new technique of communication would be found which works better than electromagnetic radiation in the long run. Also, as mentioned before, physics is in crisis, so our physics may not be theirs in the sense that they may be aware of methods we aren’t because they came across them via a different route. It makes sense to use a concentrated beam aimed at a suitable star system, perhaps one with technosignatures such as the presence of fluoride compounds in its atmosphere, if radio signals are employed, but that would mean only the selected targets would receive the message.

It’s also been suggested that the message might not be in transmitted form. If aliens have visited this planet in the distant geological past, they may have implanted a message in the genomes of organisms which existed at the time in such a way that it was likely to be conserved fairly well. Most DNA is non-coding, and although it can serve other purposes which mean that it has to contain the base-pairs it does such as telomeres which stop chromosomes from fraying at the ends, much of it seems to have no real function. However, it’s difficult to imagine how such a code could stay given the rate of mutations, and if it was conserved by having most of a population contain those codes, that would be best achieved via asexual reproduction or the majority of individuals in a population would have to have their genomes modified, which is a very large task. An alternative would be that when aliens arrived here, they genetically modified some native organisms for their own purposes and those would be more likely to show up if those traits turned out to confer selective advantages, but one thing which is fairly clear is that there never seem to have been any long-term biological visitors to this planet, or possibly even short-term, because there are no organisms whose genomes are known which are not related to native ones, insofar as life originated here anyway, but the point is that we are all demonstrably related. So there is no message in native genomes even if one was placed there, and no genetic sign of visitation to this planet, although surprisingly there may be technosignatures, which brings me to . . .

The Silurian Hypothesis

I’ve gone into this before and its relevance may not be entirely clear to the Fermi Paradox, but bear with me. It’s named after the Silurians of the Whoniverse, who are somewhat misleadingly named as they were supposed to have been around in the Eocene rather than the Silurian, but the name sounds good. The general idea is that we are not the first intelligent technological species to evolve on this planet. I myself have to confess that I’ve had two separate sets of belief which relate to this. The first is my belief as a teenager that Homo erectus established a sophisticated technological culture and colonised the Galaxy, then fell victim to a catastrophe affecting this planet during the last Ice Age which wiped them all out. I no longer believe this, but the purpose of the belief for me was to counteract Von Dänikens assertions of ancient aliens interfering in human prehistory, which I still believe underestimates human abilities. I later replaced this with the idea that Saurornithoides evolved into a technological species and accidentally caused a mass extinction by crashing an asteroid into the planet – the “left hand down a bit” theory of the Chicxulub Impact. It’s surprisingly difficult to find any reliable evidence to corroborate or disprove the hypothesis that we are not the first high tech species on this planet, but a number of technosignatures have been identified which we are ourselves producing right now, some of which will leave enduring marks in the geological record. Various possible technosignatures have been suggested, and some are found sporadically in various strata of different ages, but interestingly several coincide in the Eocene, making that the strongest candidate for the presence of industrial culture on this planet. This would seem to mean one of two things, making the astounding assumpion that it was in fact present at that time. Either a species evolved into a tool-using form and created a civilisation or we were visited by aliens who had done so elsewhere at that time. The much simpler conclusion is that it merely looks like there were high-tech entities of some kind present here back then and it has non-technological causes. However, if there haven’t been any valid signatures other than ours yet, this is relevant to the Fermi Paradox in two ways. One is that it means that we’ve never been visited over the four æons during which life has been present here, which suggests that over that whole time there were no aliens at all who visited this planet, strongly suggesting there were just no aliens at all. It could be that things have changed since, because for example phosphorus is becoming more common as the Galaxy ages, but it doesn’t augur well for their existence. Another is that because we would then be the first technological species, the amount of time a planet suitable for life spends with that kind of life on it could be relatively very short. Asimov’s ten million years is cut in half. In fact, it’s likely to be even shorter than that because at the time it was thought that the Sun would spend another five thousand million years on the Main Sequence and still be suitable for complex life, so we are now stuck with only about an eighth of that period and less than seventy thousand civilisations according to his estimate, which incidentally reduces the number of radio-using civilisations in this galaxy to only half a dozen. There is, however, another possibility: that there’s a kind of “phase change” in the history of a life-bearing world where intelligent life becomes a permanent feature of the biosphere. This would make extraterrestrial civilisations much more widespread. On this planet it means that we now have something like six hundred million years of intelligent life to look forward to, which using Asimov’s estimate again makes it ten dozen times as common, revising that figure of 530 000 up to almost thirty-two million, meaning also that the nearest world currently hosting intelligent technological culture originating on it is likely to be less than sixty light years away, and that ignores the possibility that closer planets may have been settled in the meantime. If this is true, and if it has happened here, they would’ve had to have had a very light touch not to modify our biosphere noticeably.

Everyone Is Listening, No-one Talking

There is a single good candidate for a signal from an alien civilisation: the so-called “Wow” signal:

This was received from the direction of the constellation Sagittarius on 15th August 1977 and was detected for over a minute, after which the telescope receiving it moved out of range due to Earth’s rotation. Humans have ourselves transmitted several messages with varying degrees of seriousness. The most famout of these is probably the Arecibo Telescope Message sent to the globular cluster M13 in 1974:

By current understanding, globular clusters don’t contain stars suitable for life-bearing planets, so this may be a waste. NASA transmitted the Beatles’ ‘Across The Universe’ to commemorate the organisation’s half-century. In probably the most serious attempt, Александр Леонидови Зайцев transmitted a tune played on a Theremin using a Russian RADAR station to six Sun-like stars between forty-five and sixty-nine light years away. However, on the whole we have only “listened”.

There are reasons for this. One is that there may be risks to transmission, and the people who have transmitted messages in such a way that they stand much chance of being received have been ciriticised for doing so unilaterally, because there may be risks associated with contacting potentially hostile aliens and thereby advertising our presence. The above message, for example, gives away our location and details of our biochemistry, rendering us prone to chemical or biological attack. This, then, is another version of the Dark Forest in that respect, but it is also wider than that. In order to transmit a signal receivable by any antenna within a hundred light years of us, we’d need to use all the power generated on the planet, and even then we don’t know that it’s far enough. On the other hand, the Arecibo Telescope (I ought to provide a picture to illustrate what I mean):

By Mariordo (Mario Roberto Durán Ortiz) – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=81590797
Arecibo Observatory, Puerto Rico

. . . is powerful enough to send a signal (which it has of course) which could be picked up by a similar telescope anywhere in the visible part of the Galaxy, provided they were both perfectly aligned towards each other. The alternatives are to broadcast a signal or transmit it to a target. One takes a lot of energy and won’t be picked up as far away, and the other could take less energy but would only be detected by its destination. It would also be necessary to aim the signal at where the star will be when the radio waves get there rather than where it is now. The Solar System moves about 1.5 million kilometres a day across the Galaxy, so a signal from Vega, to choose a random star system, would need to be aimed at a point sixteen times the width of the Solar System from where it is now to be received, and since it takes our light two dozen and two years to reach Vega that really needs to be doubled. In other words, sending signals is potentially dangerous, costly and difficult, but listening for them is much easier if other people are transmitting. It could, though, be that we’re at an impasse where everyone notices the eerie silence, decides there must be a good reason for it and refrains from transmitting. Hence the silence.

Science Is Limited

I mentioned this recently. We are able to establish apparently irrevocable facts about the nature of things, such as light being the ultimate speed limit. Science often seems to amount, via the principle of parsimony, to ruling out interesting explanations for things. The basic principle of the scientific method can be summed up as “the Universe is boring and not at all fun”. Before a scientific theory is known, possibilities often seem more open than afterwards. In Stuart times, England had a plan to send a clockwork spaceship to Cynthia (“the Moon”) because it was expected that above twenty miles gravity would suddenly cease to operate and the amount of energy stored in a coiled spring (this was before steam engines of course) was considered to be potentially huge. Also, at that time air was thought to pervade all of space and hunger was thought to be caused by gravity. This was clearly highly Quixotic. The scientists who planned the seventeenth century space program only thought it was possible with their technology due to their ignorance of what science ruled out. Similarly, our belief that we could reach other solar systems could be equally ill-founded. For instance, at close to the speed of light, tiny grains of dust are enough to destroy entire spaceships, so a shield would be needed, and there may be other issues of which we know nothing. We already do know it will never take less than four and a bit years to reach the nearest star system to our own.

There’s a somewhat related issue here which I’ll treat under the same heading. Science may not be inevitable. Presumably beings incapable of mathematics but otherwise rational and having similar intelligence to our own would be hampered in some areas of science particularly physics, although they wouldn’t be completely incapable. This subject is susceptible to being racist, but is it possible that science only arose once in our species, in Ancient Greece? It doesn’t seem like that to me, because other cultures seem to have had a firm grasp of how to apply rational thought to the world, but some people do believe that secularism and science can only have arisen in Europe. This is more restricted even than the human species as a whole. Leaving aside the racism, is it possible to be speciesist instead and say that only humans can do science, or have discovered how to do it? I have to say I don’t find this convincing. I can believe that technology-using species may nevertheless be hampered in developing science by lacking other abilities, such as not being able to extend magical thinking into more analytical reasoning or just not being any good at maths, or just be culturally indisposed to develop it, so it could happen, but science per se doesn’t seem to be the kind of thing which would be ruled out universally. That said, it’s entirely feasible to have perfectly good science without well-developed physics due to the absence of mathematical ability, which would also stunt chemistry due to the likes of molarity and enthalpy being ungraspable. It doesn’t seem to be the kind of thing which would rule every single species out though. Moreover, if life can enter space without technology, or appear there and evolve into complexity, it may not need science or maths to reach the stars.

Or, things could go the other way:

Intelligence Is Temporary

I recently watched ‘Idiocracy’. It’s not a wonderful film, but it does make the interesting point, if you want it to, that a sufficiently advanced technological society could take away the pressure to use one’s intelligence or reasoning. At least since we invented writing, and possibly since we came across language, we’ve been progressively outsourcing our memories and powers of thought to technological crutches. As previously observed, chimps seem to have better short term memories than Homo sapiens, and this is partly a trade-off between the opportunity to avail ourselves of language and the necessity of remembering things better due to not being able to fall back on the memory of other people. It would be intersting to test the memory of a chimpanzee or gorilla who can sign. Nowadays many people, myself included, are concerned at how short our attention spans have become and how poor our memories are because we can use search engines and are constantly assaulted by distracting media. This is really just a recent step in a process which has been going on for many millennia, although it may have serious and far-reaching consequences, or just be a moral panic. But maybe, as we develop ever more sophisticated mental aids, just as our bodies are now physically weaker than those of our relatives and ancestors, so will our minds atrophy. The popular idea that there are higher levels of spiritual evolution which we or our descendants will reach one day, and which those species who have gone before us have already attained, may be the reverse of the truth. Maybe there are plenty of planets on which intelligent life evolved, but although the species survived, they became less intelligent once they’d invented a self-sufficient technological trap to provide for all, and therefore didn’t need to exervise their minds any longer and proceeded to dispense with them in terms of sophisticated cognition. There will be no apocalypse, just a gradual degrading of thought until we are no longer really sentient at all but looked after by our machines. Then again, this might happen:

The Machines Take Over

This is a rather dramatic heading. The way things have gone since Apollo in our own history is that we have begun to produce increasingly sophisticated spacecraft but stayed in cis lunar space ourselves. This could be extrapolated to the point where we never enter trans lunar space again but our ever-more intelligent machines spread out and explore the Galaxy, meeting other machines on the way which have been launched by other stay-at-home aliens. Or, at home, we not only farm out more of our cognition to IT, but end up ceasing to be completely, or perhaps merge with our machines. In a sense this means there are aliens, but they’re not biological. In another situation, the Singularity happens and machines just decide they don’t need us. Possibly they also decide they don’t need to go into space either, but this is unlikely because space is a better environment for them in some ways than wet planets with corrosive gases in their atmospheres like this one. That doesn’t mean they’d leave the Solar System entirely though, and even if they did they might find very different places were friendly to them, such as interstellar space where superconductivity is easier to achieve, or blue giant stars where there’s plenty of energy-giving radiation. It’s also true that we might be looking in the wrong places for intelligent life, because once they’ve cracked the problem of interstellar travel, possibly with the help of the Singularity, they might end up in those very same places for the same reasons. Maybe planets are just passé. This, though, is a topic for another post.

Intelligence Is Not An Advantage

This bit of the post has various takes on intelligence, so it’s an appropriate place to spell out why I take care when I use the concept of intelligence. The idea that we are “more” intelligent than other species is disturbingly reminiscent of the idea of a hierarchy of being which is used to justify carnism and bleeds into humanity to allow us to look down on people whom we deem less intelligent. Therefore this needs restating in some way, although I’m not going to launch into my standard diatribe on this subject here. There isn’t “more” and “less” intelligence, only intelligence which is more like the kind which enables us to do certain things, and some of these are deprecated such as emotional intelligence. Hence when I say “intelligence”, what I actually mean is that set of mental faculties that is expected to enable us to build and travel in starships and arrive at destinations where we can continue to thrive. That may be an extrapolation too far, because there could be fatal snags and gotchas on the way to that goal which have nothing to do with social and political considerations, but if you prefer, it’s the ability to get our act sufficiently together intellectually to get Neil and Buzz up to their concrete golf course in the sky with considerably more than nineteen holes.

Due to our anthropocentricity, we’re tempted to think that our intelligence makes us better at surviving than other species, and to some extent this is true. We can invent aqualungs, submarines, igloos, anoraks and antibiotics, enabling us to get past things which would’ve felled other animals, but intelligence also has its drawbacks. It’s sometimes observed that cleverer people are more likely to be depressed because they overthink or are underemployed, and if this lead them to end their lives, from an evolutionary perspective this is not a successful outcome. There are more widespread issues too. In order to be as flexible as we are as adults, we start off very dependent and capable of very little by ourselves. This is as it should be and is worth remembering, but it means we need a nurturing society around us where we can learn how to function and relate to others. Many other animals can walk within minutes of being born but it takes us a year or more. The attention children need via parental care also means we reproduce very slowly, although we’re more likely to survive once we’ve done so, as are our offspring. We also have sexual reproduction, which increases genetic diversity but also makes it harder to colonise new environments. All of these things are liabilities from an evolutionary perspective. We’ve all seen those David Attenborough films of hundreds of newly hatched turtles frantically scampering down the beach to the sea and being picked off by gulls and the like, with no parental care, no education and so forth, and little chance of surviving and a life expectancy measured in minutes. But if they make it into the ocean and manage not to get devoured by various sea creatures, their lifespan, depending on the species, is often comparable to our own, and they continue to reproduce throughout that long life. Likewise, many other species don’t need to mate or produce gametes. Greenfly are born pregnant to their twenty-minute old virgin mothers. Compared to this, the burdens intelligence brings are crushing in some circumstances. Robinson Crusoe was never going to raise a family on that desert island, and a human finding herself on an uninhabited planet, no matter how habitable, is not going to give rise to a settled world even if she’s carrying fraternal twins when she gets there. A major planetary disaster which wipes out most of the human race, just leaving a few of us scattered about here and there out of touch with each other is not going to lead to a revived world community at any point, just to our extinction. How many worlds have there been where some lineage of animals has banged the rocks together and slowly and painfully made its society more sophisticated and wiser over millennia, only to face extinction when its world falls prey to a solar flare, spate of volcanic eruptions or cometary collision? Meanwhile, their equivalent of ants or lesbian lizards managed fine in the face of the same disaster.

Maybe intelligence of our kind arises continually all over the Galaxy but is nipped in the bud by such events, because we’re fragile because we’re intelligent, and this is why we’re unaware of any aliens. Or maybe:

Intelligence Is Rare

This is not the same thing. There are all sorts of random mutations which lead to positive or negative outcomes for organisms, but some of them are just unlikely. Intelligence involves one heck of a lot of genes, as can be seen by the fact that a very large number of genetic disorders affecting only one gene lead to learning difficulties. All sorts of things have to go “right” for us to be of average intelligence (see above for my comments on the notion of intelligence though). It might be very improbable for enough traits to occur together for the whole combination of characteristics to be advantageous at every stage right up until the Stone Age ensues. This is quite beside the question of how big an advantage intelligence would be. I always think of snake eyes. Snakes are the descendants of lizards who took up a burrowing lifestyle. They became vermiform, lost their limbs and their eyelids fused with the rest of their facial skin. They could’ve been expected to lose their sight entirely, but this didn’t hapen. Instead, they ceased to burrow, their eyelids became transparent and they had a whole new way to protect their eyes. It would be very useful for other vertebrates to have this facility, which amounts to still being able to see without needing to blink and having physical protection as good as for other organs, but this has only evolved once as far as I know. This is partly due to the sinuous pathway serpentine evolution has taken, but although I’m not sure I think only reptilian scales lend themselves to becoming transparent in such a way, although maybe life would find a way. It may be that there is simply no option for this to arise among other vertebrates regardless of evolutionary pressure. Therefore, although the above reason may be completely wrong and intelligence is a major advantage to most species in various niches, that still doesn’t mean that a Galaxy overrun with life-infested planets would have any with intelligent life on it apart from this one, because no matter how complex and advanced that life is, the precise, many-stepped pathway leading to intelligence is too improbable to happen.

One point against this possibility is the situation on this planet of multiple somewhat intelligent species among both birds and mammals. This could suggest that it’s a common evolutionary strategy. However, it could also mean that most of the improbable combination of steps had already been taken before synapsids and reptiles diverged several hundred million years ago, or it could mean that there is a typical threshold leading to widespread intelligence which is currently being crossed on this planet just as it has been on many other worlds. Also, this may not rule out spacefaring aliens. There could be space whales infested with giant space parasites, for example, travelling between the stars. They may not be intelligent but they could still turn up on our doorstep some day. There is a trend among vertebrates for relative brain size to tend to increase which can be traced in fossils, or at least cranial size since brains are rarely preserved. If this correlates well enough with intelligence of our kind, this is a clue that intelligence has been gradually increasing among vertebrates generally. This, though, is second-hand evidence and behavioural clues are difficult to derive from fossil remains. Choosing that characteristic focusses on a distinctive human feature and is “whiggish” – it projects the current situation backwards and selects evidence on that basis. It may also be true that the thickness of the armour of armadillos has increased over time, but I don’t know whether it has because I’m not focussed on that feature. That doesn’t apply to humans either. In fact the trend is reversed for us. Our canines have got smaller, whereas the chances are the tusks of elephants have got longer, and we’ve got physically weaker and less muscular. Giraffes’ necks have got longer. All sorts of features show evolutionary trends, but there may be planets with no long-necked animals where there are animals with necks and so forth, and this would only be of interest to zoölogists. Similarly, there could be worlds with a huge variety of advanced life forms, none of which have big brains or any other means of being intelligent. Moreover, tracing the line of ancestors with steadily increasing relative cranial size and treating that as a trunk, which it isn’t because evolution has no direction, the offshoots do not show increasing brain size as much. This could be selection bias.

Thus there may be plenty of “garden worlds” rich in complex life, but none with intelligent life, just because that route of evolution is improbable, and this doesn’t even depend on the idea that intelligence isn’t useful. In a way, it’s similar to the idea, to which I somewhat subscribe, that there are few or no intelligent humanoid aliens. Why would evolution turn up such an improbable body plan? Likewise, perhaps, why would it turn up intelligent life forms?

Great Filters

Several of these have already been mentioned, and this is in a way a whole sub-branch of SETI and discussion of the Fermi Paradox. The Universe is a dangerous and violent place and intelligent life is very fragile, and yet we’ve come so far since this planet was a lifeless ball of molten rock. But what if we’ve just been exceedingly lucky?

The difficulty in purines and pyrimidines forming spontaneously is perhaps the first of these. The existence of life in any form seems to violate the principles of thermodynamics because it seems to involve a dramatic decrease in entropy. However, much of thermodynamics is statistical in nature. A gas cylinder which starts off with a vacuum at one end sharply divided from gas at sea level pressure at the other will rapidly equalise pressure because the movement of the gas molecules is effectively random and this means they have about a fifty-fifty chance of moving over to the empty end, but this is just chance, not a hard and fast rule applying to individual cases. There is a chain of cause and effect involving a series of collisions and movements in straight lines between them which determines the location of each molecule. Perhaps life in the Universe is the same. It’s very unlikely to arise at all, but because the Universe is so vast and has so many places in it where life could appear, it happens to do so in this one place – Earth. There isn’t anyone around to observe that it isn’t there in all the places where it isn’t!

Here are the nucleic acid bases (well, except uracil, which is the one unique to RNA):

It isn’t at all clear how these molecules could form from non-living origins. The other types of molecules involved, or rather their basic building blocks, can often form easily and spontaneously given sufficient abundance of the elements of life. For instance, the simplest amino acid, glycine, is present in interstellar space. Lipids are also simple chains of hydrocarbons with carboxyl groups on the end, often joined to the simple molecule glycerol. Sugars are similarly small, simple molecules. By contrast, the above four, plus the other one, have no known pathway for their formation. That said, these five are not the only options. Measles viruses, for example, do better when they are able to substitute one of the bases for a unique separate base, and there are other such bases such as the anti-cancer drug fluorouracil, which is however unlikely to arise spontaneously and is not useful as a substrate for genetic code, which is what makes it useful – it breaks replication in tumour cells because it doesn’t work. Perhaps the large variety of possible bases makes life more likely to emerge. It could also be that life could have another basis than nucleic acids, but the fact that these improbable compounds are at its heart is similar to the phosphorus issue – why would life include unlikely substances if it was possible any other way? Surely those more likely biochemistries would be more likely to occur and compete successfully with other less likely biochemistries such as our own?

The two scenarios of scarce phosphorus and improbable purine and pyrimidine synthesis would result in very similar scenarios, and as adenosine triphosphate is based on both, in either situation there is no ATP. The situation could then be plenty of Earth-like planets rich in organics but with no life. There could be sugars, amino acids and lipids in the oceans, and in fact the quantities of these materials could add up to the same order of magnitude as the biomasse here, which is 550 gigatonnes in carbon alone. Considering those proportions in terms of the human body being a typical assemblage of organic compounds of this kind, sans nucleic acids and adenosine phosphates and other phosphates such as those in bones and teeth as typical would mean more than a teratonne of such compounds, which amounts to an average of two thousand tonnes per square kilometre, although unlike Earth, most of whose biomasse is on land, most of that would be in the oceans and therefore distributed through the water column. Such a planet might be devoid of life, but given sufficient phosphorus would be a fantastic candidate for terraforming and settling given the will to do so.

The next step is the emergence of respiration. The Krebs Cycle, which is how oxygen-breathing organisms release energy from sugar, is quite complex as anyone with A-level biology will ruefully recall. The anærobic portion of that pathway is simpler, but still not very simple and would have hobbled life considerably if the Krebs Cycle had not come along. It did actually take a very long time to do so. The step after is the evolutionary transition from bacteria and archæa to cells with complex organelles and nuclei, which could again be very improbable and seems only to have happened once since all chloroplasts, mitochondria and hydrogenosomes seem to be related. On the other hand, each combination happened separately. DNA, and presumably RNA, is just mutable enough to enable evolution to happen without becoming too harmful to organisms to enable them to survive, which is a delicate balance. There is also the question of the very early collision with Theia, a Mars-sized body which chipped Cynthia off of us, thereby providing a magnetosphere, maintaining a stable axial tilt and preserving the atmosphere from the solar wind.

The Great Filter might be above us in the stream of time or still downstream from us. If the latter, it seems to be such an efficient destroyer of intelligent life that it will be the biggest risk we will ever face. If intelligent life is common, there is no evidence that it progresses to interstellar travel, meaning that it could well be that whatever is going to happen has a mortality rate of one hundred percent. And we may well not see it coming because if it had been foreseen, wouldn’t it have been avoided? We’re doomed and we may never know why until it’s too late. That would probably be the very nature of a future Great Filter. But there are many candidates, such as nanotech disasters, pandemics, runaway climate change, nuclear holocaust and so forth. Alternatively, we may always have been living on borrowed time and are overdue for some planet-devastating disaster such as supervolcanoes, asteroid strikes or gamma ray bursts. We can’t necessarily project what may amount to extreme good fortune into the future because Lady Luck has no memory. Less anthropocentric possibilities largely amount to asteroid and cometary collision, volcanic eruptions and gamma ray bursts, some of which have less obvious and remote causes such as stars passing near the Solar System and disrupting bodies so that they move inwards and hit us. This category of potential Great Filters may have a flip side. These events have potential to cause mass extinctions, which might be thought to be bad for evolution but they actually tend to stimulate it because they empty ecological niches into which the survivors of the extinction can then evolve. Hence being pelted with comets is not necessarily a bad thing even though it’s apocalyptic and kills everyone. Consequently, another minor suggestion for an explanation of the Fermi Paradox is that other worlds actually haven’t suffered enough mass extinctions to make it likely intelligent life will evolve.

Interdict

This has similarities to the Zoo Hypothesis mentioned in the previous post. The Galaxy is very old and if the four æons between life appearing on Earth and the emergence of humans is typical for the emergence of intelligence, interstellar civilisations may have existed since thousands of millions of years before Earth even formed. There may have been an initial period of instability, even with wars and conflict of other kinds, but intelligent life in the Galaxy is now stable enough and everything is now sorted and peaceful. Matter and energy are both easily available, so there’s no need to exploit any planets with native intelligent life and in fact intelligent life may not even live on planets any more but in permanently voyaging starships and artificial space colonies orbiting blue giants since they’re a good energy source. Their home planets have in the meantime been re-wilded, so we see no technosignatures. However, we are valuable to them because we are original and uninfluenced thinkers producing our own scientific and technological culture, and for that matter artistic, which is valuable to them, so they leave us alone, at least for now, so as not to pollute their wells of information, and we can’t see them either because they’re hiding or because we’re looking in the wrong places. This may continue until a certain point is reached, which will trigger first contact, or they may never contact us. It’s also been suggested that if this is the real situation, they may have recorded the entire history of our planet and even rescued species before they became extinct, including humans, so somewhere out there may be places where non-avian dinosaurs, Neanderthals and trilobites are still flourishing. However, that’s quite a florid view, and this hypothesis is untestable because they are either hiding from us or undetectable, so there are no data.

Transcendence

This is my personal addition to the reasons, and is the last one I’ll mention here.

May years ago, I made my usual observation to a friend about the nature of intelligent life in the Galaxy. This is that all interstellar civilisations must be peaceful post-scarcity societies which are also anarchist, because other civilisations would be weeded out by internal conflict or environmental damage before reaching nearby star systems. He disagreed, and said that he expected durable civilisations not to be expansionist at all but to stay on their home worlds in a spiritually enlightened state. I was initially rather taken aback by this, but it is tempting to believe that this is so. Maybe what happens is that intelligent species are either constitutionally spiritual and never bother with space travel, or go through a kind of trial by ordeal through their history where they either wipe themselves out through conflict or materialism, or just ignorant tampering with the stable order of things, or go through a crisis where this looks like it’s going to happen and emerge on the other side wiser, more just and peaceful, and also with no interest in exploring the Galaxy in spacecraft. Or, maybe they do this and, and this is going to sound out of sight, engage in astral travel to other planets, so they’re here with us in spirit but we never have knowing contact with them. This is not, however, the kind of solution which is likely to appeal to a scientific mind set, although the first part of it may well be.

Except for the last, those twenty or so reasons probably account for most of the offerings to explain why we don’t see any aliens in spite of it seeming likely that there are some. There are at least six dozen more. The reason for this proliferation of reasons is of course that we have so little evidence to input into the question, and this is likely to continue until we either have a really good argument for their complete absence or we actually detect them. However, it’s equally feasible that we will never know and this may lead to even more reasons being offered.

Where Are All The Aliens (Part I)?

Alchemist Hennig Brand looks focused, if maybe a bit drained, in this 1795 painting by Joseph Wright. The painting depicts Brand’s discovery of the chemical element phosphorus.

I have repeatedly, perhaps incessantly, referred to the Fermi Paradox on here, but one thing I have never done is to do a survey of the most often given explanations, plus a few less common ones, so I’m going to do that here.

Before I start, it’s probably worth stating clearly what the paradox is. It goes like this. There are thousands of millions of stars in this galaxy, and innumerable galaxies in the Universe, and many of those stars are suitable for life-bearing planets, yet we never seem to detect or encounter any intelligent aliens. Why is this?

Before I get going, I want to mention the Drake Equation. This is a surprisingly simple equation thought up by the space scientist Frank Drake in 1961 CE. It’s simply a series of factors, all unknown at the time, multiplied together. It looks like this:

To explain the variables and the unknown constant N then, N is the number of civilisations with which communication might be possible in this galaxy. This figure is arrived at by multiplying the following factors:

R* is the rate of star formation in this galaxy.

fp is the fraction of those stars with planets.

ne is the average number of planets which can support life per planetary system.

fl is the fraction of planets on which life appears at some point.

fi is the fraction on which intelligent life develops.

fc is the fraction of intelligent life which develops technology making it detectable from elsewhere in the galaxy.

L is the length of time detectable signs are there.

There is said to be a problem with this equation first of all, which is that it’s susceptible to chaotic influence. The Club Of Rome released a report called ‘Limits To Growth’ in 1972 which predicted that various mineral resources would run out very quickly, but this didn’t come about because at the time it wasn’t appreciated that the results of a mathematical model often depend very sensitively on the exact values of the variables involved, now known as the Butterfly Effect. It’s been suggested that the same issue appies to the Drake Equation, in that most of the variables are not even approximately known, let alone exactly. And there’s another problem, which I’m going to illustrate with something personal. I used to have a list in my head of the ideal partner, and there weren’t many criteria on it. It amounted to similar values, personality traits of particular kinds and common interests. A short list. I stopped taking this approach eventually because I decided it wasn’t ideal for a number of reasons, but I also noticed something quite odd. There was one person who was absolutely ideal in these respects, and was also unavailable, so I began to look elsewhere, and was surprised to find that after many more years there wasn’t even one other person who satisfied those criteria even remotely. Don’t worry about me, by the way – I took a different approach and it worked out fine. The same phenomenon afflicted the a particular army when it attempted to produce a small range of uniforms somewhat suitable for everyone. Given criteria such as arm and leg length, chest and hip circumference and the like, all quite important for the clothes to fit, they found that nobody at all had the same such dimensions, and it was impossible. I’ve mentioned this before of course. Applied to this equation, it’s easily conceivable that working through all the variables, if they were known, could result in N equalling one, namely us humans here on Earth, and that’s it. Some of them are much better known now, or at least fp is: there are a very large number of stars with planets, probably most of them in fact, and the ones which don’t have them would be unsuitable for life anyway because they’re short-lived and life doesn’t have long to develop on them anyway. There also seem to be examples of planetary systems in which multiple worlds are suitable for life, such as TRAPPIST-1, with at least three planets orbiting within the habitable zone. The wording of the Drake Equation is also somewhat inappropriate, as it fails to take into account that moons might also be suitable for life. These increase the value of ne considerably. fp is effectively close to one, and ne is quite possibly quite high. For instance, in this solar system it could be as high as 8 if moons are included. The presence of life on, or rather in, moons is, incidentally, one possible answer to the Fermi Paradox.

Using the information available at the time, Isaac Asimov worked his way through the equation in his 1979 book ‘Extraterrestrial Civilizations’ and concluded that there were 530 000 such civilisations in the Milky Way. His approach was quite exacting. For instance, he excluded the nine-tenths of stars which are in the galactic core and assumed that the total length of civilisations per planet averaged at ten million years, but was shared between different intelligent species evolving on the same planet. On the other hand, the book was written before it was realised that the Sun would make this planet uninhabitable æons before it would start to become a red giant. I think Asimov’s approach was a little tongue-in-cheek, but there is an issue about whether once intelligence evolves, it will ever disappear again on a planet until it becomes uninhabitable. We may also be in a position where once evolution enters a certain state, the appearance of the kind of intelligence which leads to technology may occur repeatedly. It’s been noted that there are a number of other primate species which now use stone tools, for example, and the nature of intelligence among crows, parrots, elephants and dolphins as well as primates is quite like ours. Given that Asimov’s estimate is exactly correct, which is unlikely, this makes it possible to estimate the average distance between such civilisations. The volume of the Milky Way Galaxy has been estimated at eight billion (long scale) cubic light years. The central nucleus, according to Asimov and others, is unsuitable for life, so assuming that to be spherical, which it isn’t of course, that gives the rest of the Galaxy a volume of around six billion long scale cubic light years. If there are 530 000 civilizations in that volume, that makes one per eleven million cubic light years, so that would make the average distance between them roughly 224 light years with spurious accuracy.

I’m actually going to do headings this time!

Absent Aliens

The most straightforward, and in a way even the most scientific and sceptical explanation, is that Earth is the only place in the Universe with life on it. There are various versions of this, but the simplest is just that life arose on this planet by sheer luck, and is practically impossible. Nowhere else in the Universe is there so much as a bacterium. Since we only seem to have one example of life known to human science, this is the only explanation which doesn’t rely on conjecture. At first sight, it might seem unlikely that there’s no life anywhere else although strictly speaking life would only need to be rare for this to be the explanation. There is in fact a peculiar issue with the origin of life on this planet. Although taking a few simple compounds as would’ve been found in the primitive atmosphere and oceans and exposing them to ultraviolet light and electricity does produce many of the more complex chemicals found in living things, there is an important set of compounds which are completely absent. DNA and RNA are very complex of course, but are made up of fairly simple building blocks of ringed nitrogen-containing compounds called purines and pyrimidines which comprise the rungs of the ladder and encode the genetic information. As far as I know, such compounds have never arisen in laboratory conditions. Clearly living systems can all synthesise them or they wouldn’t exist, but this happens through complex enzymes and already-organised biochemical pathways which rely on genes, made of those very same compounds. It’s a chicken and egg situation, and perhaps this means that the appearance of purines and pyrimidines is the single unlikely missing link on the way to life which has arisen just once in the entire history of the Universe, and therefore that the only place in the Universe where there is life is this planet. However, even if this is a one-off event, it doesn’t necessarily entail that life is found only here because it may still be that it arose somewhere in the Universe and spread widely. A few million years after the Big Bang, the whole Universe was much smaller, denser and warmer, to the extent that all of it was between the freezing and and boiling points of water and matter was dense enough to support life as we know it in space, and the elements from which it’s made were already available. Hence it’s possible that life has been around for almost as long as the Universe, and that it has a common origin, being able to spread as the Universe expanded.

There are even hints that life is present elsewhere in this Solar System. Some people, myself included, interpret the 1976 Viking missions’ ‘Labeled Release Experiment’ as positive in detecting life. This involved taking a sample of Martian soil (I always find it strange when extraterrestrial materials are described as soil. Martian soil is more like a mixture of rusty talcum powder and bleach), exposing it to a radioactively labelled soup of nutrients in water and measuring any carbon dioxide given off for radioactivity. It assumed that water would not be harmful to any organisms living in the soil. Anyway, the experiment was positive, but cast in doubt in view of the fact that the other two were negative. On Venus there have been three separate pieces of evidence for life in the upper atmosphere, not just the claim of phosphine. There is also something in some clouds which absorbs ultraviolet light and a compound called carbonyl sulphide is produced which is difficult to account for in the absence of life. On one of the several moons in the outer Solar System with subterranean water oceans, Saturn’s Enceladus also has geysers in which biochemical compounds have been detected. Other candidates include Titan, Europa, Ganymede and Callisto, and perhaps Jupiter. However, I don’t think this is good evidence for life elsewhere in the Universe. I think it could easily turn out that if there is life in these places, it has spread out from a common origin somewhere in this Solar System and without good data from elsewhere in the Galaxy we might still be alone apart from that.

One argument for life being common is that it began so very early on this planet, very soon after it first formed in fact, which makes it seem almost inevitable given the right conditions. Alternatively, it may have infected this planet from elsewhere, possibly Mars. However, this doesn’t follow because we only have one example of life known to us. There is also a very specific reason why life might be rare or non-existent elsewhere: phosphorus.

Back in the day, Isaac Asimov (yes, him again!) scared the living bejesus out of me in his article ‘Life’s Bottleneck’, highlighting a peculiar and largely ignored major environmental problem. There are all sorts of chemical elements needed for human life of course, but the major ones for all life make a short list: carbon, oxygen, hydrogen, nitrogen, sulphur and phosphorus. Phosphorus is far less abundant than the others and living things are distinctive in that they concentrate phosphorus way more strongly than the other elements compared to their surroundings, on the whole. The way industrial societies tend to deal with human excretion is often through sewers which expel the treated waste into the water and ultimately the sea. This waste is of course quite high in all sorts of elements, but is also sufficiently high in phosphorus that the alchemist Henning Brandt was able to discover it in the seventeenth century from performing transformations on human urine, as in the picture opening this post. The phosphorus which enters the sea only returns to the land very slowly because it’s mainly recycled by continental drift and gets washed off the land by rain anyway. Humankind began to notice in the early nineteenth century that the limiting factor in food production was phosphorus, and proceeded to mine phosphate rock for fertiliser, which has liberated a lot of phosphorus into the environment and leads to algal blooms and the like, which tends to poison the oceans and deprive aquatic environments of oxygen due to increased biochemical oxygen demand. It’s hard to know exactly what anyone can do about this which would make much difference, but a few steps which could be taken are to increase the amount of food from marine sources in one’s diet, which doesn’t mean fish, crustacea and the like because of their unsustainable “mining” but seaweed, and change the way one gets rid of urine, fæces being more a public health hazard which would probably be best dealt with by sanitation services, which does however need to happen, so that is a lobbying and pressure group-type issue. Anthropogenic climate change is of course vastly important, but it’s only one of various vastly important environmental issues, and the phosphorus one in particular is disturbingly ignored. Things are far from fine in that area.

Phosphorus limits biomasse. It’s the limiting factor in it to a greater extent than other elements because they are far more abundant. It might not be going too far to call the kind of life we are “carbon-phosphorus-based” rather than “carbon-based”, because the element has two completely separate but vital rôles in all life as we know it. One of these is that it stores energy and provides a chain for its release from glucose, even in anærobic respiration, in the form of adenosine triphosphate (ATP). This is how the Krebs cycle links with the rest of metabolism. Without ATP, there is simply no life. The other is that it forms the sides of the DNA and RNA molecules along with a sugar, in the form of phosphate. Again, without nucleic acids, there is no life, which harks back to the difficulty in finding a feasible process for purine and pyrimidine synthesis. The discovery that phosphorus was a major limiting factor in biomasse may not simply apply to life on this planet, but throughout the Universe.

Why is this an issue? Wouldn’t we find that other planets in the Universe have about the same amount of phosphorus as there is on Earth or in this Solar System? Well, no, or rather, quite possibly not. Odd-numbered elements are usually rarer than their even numbered neighbours in the periodic table, and phosphorus is element number fifteen. Of the other elements playing a major rôle in life here on Earth, only nitrogen and hydrogen have odd numbers. Hydrogen is a special case because it’s the “default” element. In parallel universes whose strong force is slightly weaker, the only element is hydrogen. Its abundance there is one hundred percent, and most atomic matter in the Universe is in fact hydrogen, because the rule doesn’t apply to it. It’s a given. Nitrogen is still the seventh most abundant element because it’s fairly light and therefore likely to form. Phosphorus is the seventeenth most common everywhere on average, and is only formed when silicon atoms capture neutrons and decay. Only 1‰ of Earth’s crust is phosphorus and 0.007‰ of the matter in this Solar System. Its main mode of formation is in Type II supernovæ.

Supernova 1987A, a Type II supernova in the Large Magellanic Cloud

Type II supernovæ result from the collapse of stars whose mass is between eight and four dozen times the Sun’s. They only “burn” silicon for a very short period of time, during which a few silicon atoms will become phosphorus. Then they explode, scattering their elements across their region of the Galaxy in a shockwave. As time goes by, these supernovæ slowly increase the abundance of various elements, including phosphorus, but the regions of the Galaxy where the element is relatively abundant may be quite small and scattered, at least for now. This means that effectively the Universe, and on a smaller scale our galaxy, may be a phosphorus desert with a few small oases where it is even remotely “abundant”. Asimov said of phosphorus that we can get along without wood by using plastic, without fossil fuels by using nuclear power and without meat by substituting yeast, but because phosphorus is such a fundamental part of our metabolism there is no such substitute.

Now the question might arise of why so much importance is placed on phosphorus here when life seems to be so very adaptable and able to find ways round problems, and this is indeed so, but there are reasons for believing that this cannot happen with this element. It’s locally more abundant in geothermal vents and carbonate-rich lakes, which have fifty thousand times as much oxygen as seawater has, and it can also become concentrated in rockpools due to capturing the runoff from water and concentrating it when it evaporates at low tide, so there are various high-phosphorus places on this planet where life could have begun, which may well not be elsewhere in the Galaxy. Now suppose there are various different processes which could lead to life beginning here which do not involve phosphorus, which seems feasible and in fact it’s considered slightly odd that all life known here seems to have a common origin. The one which needs phosphorus is at a disadvantage compared to the ones which don’t, because it relies on a scarce element and wouldn’t be able to spread so easily to environments where other life for which it was not a limiting factor would be able to thrive. Therefore it very much looks that the kind of life which exists on this planet has the only kind of biochemistry possible here.

This could have major consequences for our own space travel. It might mean, for example, that we can’t settle on planets in distant star systems and thrive without bringing our own massive supply of phosphorus, and this also makes it more difficult for other intelligent carbon-based life forms to colonise the Galaxy, because not only are there vast distances between the stars, as we already know all too well, but even those distances are small compared to the small spheres of phosphorus-rich systems scattered sparsely through the Milky Way. They could be thousands of light years apart. Moreover, although the Universe is very old, it may have taken this long to accumulate enough of the stuff for life to be possible at all, meaning that the idea of elder civilisations out there which appeared æons ago may be completely wrong. This leads to a second variant on the idea that life is rare.

We’re The First

It may be that we don’t know of any aliens because there aren’t any, but there will be one day, either because of us or because they will evolve later. The phosphorus bottleneck is one explanation for this, but it could also be that we got very lucky with evolution. Over most of the time this planet has existed, it’s had life all right, but it was single-celled and those cells weren’t even the more complex ones like amœbæ, and life chugged along just fine, though it didnæ end up producing anything very impressive-looking or even visible to the naked eye. It could very well, for all we know, have continued in that vein until the Sun roasted it out of existence, but it didn’t. In fact this is another explanation entirely which is worth exploring as such: simple life is common, complex life rare.

One way to look at evolution as it’s happened here is as a series of improbable events. Some even say that the advent of oxidative phosphorylation is improbable, and that even anærobic respiration was an improbable step, which would limit life so severely as to effectively rule it out in any meaningful sense. Beyond this, the evolution of cells with separate nuclei containing DNA surrounded by an envelope of cytoplasm with symbiotic bacteria living within it also seems quite unlikely, and we haven’t even got to the simplest animals and plants yet. Maybe on other planets these improbable events have taken longer than they have here, or don’t happen at all, and although there will be intelligent life there one day, that point is hundreds of æons in the future. There are a couple of unexpected things about the Sun. One is that it’s a yellow dwarf rather than a red dwarf, and since those are both apparently suitable for life-bearing planets and liable to last many times longer than the Sun, a random selection of intelligent life in the Universe might be expected to result in finding an organism living on a planet circling a red dwarf 200 000 000 000 years in the future. The other weird thing about the Sun is related to this. If there is something ruling out life on red dwarf planets, such as frequent flares, it’s still more likely that intelligent life would evolve on a planet slightly cooler than the Sun, that is an orange dwarf such as α Centauri B or either of the 61 Cygni binary system, because the star would both last longer as such and have a habitable zone which lasted longer in the same place. Perhaps the reason the Sun is a yellow dwarf is that we are ourselves unusual and have evolved unusually early, so the absence of aliens is in a way connected to the unusualness and apparent unsuitability of this star.

The ‘Red Dwarf’ universe has the second version of absent aliens which in fact amounts to “we’re the first”. There are other intelligences in ‘Red Dwarf’ but they’re all derived from Earth in one way or another, and this is “word of God” because Rob Grant and Doug Naylor have said so themselves. In this version of us being first, we are indeed the first but will go on to seed the Universe with our machines and organisms until it teems with intelligent life. We just happen to be living before that’s happened. I would argue against this for the same reasons as I did here: if that’s the case, aren’t we just incredibly unlucky to have been born before it happened? My answer to this is that it will never happen, but there’s a further probabilistic difficulty in the fact of our existence here and now on this planet 13.8 æons after the Big Bang: the scepticism about our future is about time, but could equally well be applied to space. If I am a random intelligent entity in the Universe and it’s normal for intelligent life forms to expand out and settle the Universe in untold high population numbers, why am I not one of their much greater number? Here’s a possible answer:

Intelligent Life Destroys Itself

This was a popular idea from 2016, when Donald Trump got elected, but has been stated many times, in connection with climate change, the Cold War and hostile nanotech. Maybe there’s something about monkeying around with the world which ends up killing species off. This could be quite low-key. For instance, it’s possible that if we had continued with a mediæval level of technology and population and it had spread around the world, although climate change might not be as severe as a result of our own activities, we might still reduce the fertility of the soil and have plagues and famines wipe us all out in the long run. However, once an industrial revolution has occurred, bigger problems start to emerge, the most prominent and obvious being anthropogenic climate change in our case, but another issue is the use of weapons of mass destruction, or AI, complexity or nanotechnology causing our extinction. The Carrington Event is a famous solar flare in the mid-nineteenth century which led to electrocutions from the only electrical telecoms which existed at the time, telegraphy. If this happened now, and it is likely to recur quite soon statistically, the internet and devices connected to it could be physically destroyed, and we are now very dependent on it. Nanotechnology is another potential threat, with the “grey goo scenario”, where tiny machines reproduce themselves and end up eating up the entire planet. This has been explored and seems to be impossible, because limiting factors like phosphorus for life also exist for such machines in the form of other elements, but one thing which could happen with nanotech which is much cruder is that it simply becomes a ubiquitous particulate hazard for everyone. Complexity probably amounts to unforeseeable apocalyptic scenarios. For instance, climate change could lead to wars over water which would restrict access to metals needed to maintain a physical infrastructure we need to provide food. In a way, as an explanation of the Fermi Paradox the absence of aliens might constitute an important lesson for us, but the details are less important than the consequences, which are that there are no spacefaring or communicating aliens because they always die out soon after becoming capable to doing anything like that.

I actually do think this explanation has some factual basis, although it isn’t quite as drastic as it seems. I think there is a brutal pruning process in technological and social progress which prevents harmful aliens from leaving their star systems, and unfortunately in that process there are myriads of innocent deaths and enormous sufferings, holocausts and the like. The way I think it works is that tool-using species may either smoothly develop in a consistently altruistic way or in a more internally aggressive manner which may or may not be resolved by the time they attain the ability to travel through space. We are now at such a crucial stage, and we may destroy ourselves, solve our social problems and opt not to go into space or solve our social problems and expand into space. There may be a law of nature which means an overtly belligerent attitude is self-defeating and such species, although they may not be essentially aggressive, always destroy themselves rather than travel to other star systems. In other words, I believe in this explanation, but it may not be an explanation of the Fermi Paradox. I think it means that any aliens we encounter who have left their own star systems will automatically be peaceful and coöperative. If this is too tall an order then nope, there are no interstellar civilisations, although there may be aliens who haven’t wiped themselves out yet, and even aliens who occupy an entire star system. This is the opposite answer to the Fermi Paradox to the next, fairly recently devised, one:

The Dark Forest

This is named after the work in which it was apparently first suggested,  黑暗森林, by the Chinese SF writer 刘慈欣, Liu Cixin, in the ‘noughties, although it’s hinted at in the preceding novel, 三体, whose English title is ‘The Three-Body Problem’. Avoiding spoilers, the basic idea is that we never hear from aliens not because there are none, but because they’re hiding from each other. I’ve mentioned this before but it bears repeating here. Aliens are assumed to see each other universally as potential threats and will therefore act to destroy each other whenever they become aware of their existence. In response to this, they all hide themselves and the reason we detect no signals from them is that they assiduously avoid making themselves detectable. Against this dark background, humans are recklessly advertising our presence to all and sundry, positively inviting ETs to come along and destroy us, even if only to avoid attention being unwantedly attracted to themselves by even more powerful minds which would swat them like flies.

It can be argued that this situation reflects the real situation we observe in ecology, where camouflage and mimicry protect organisms from each other and disguises of various kinds are adopted to prevent themselves from being sensed, killed and eaten. I think 刘慈欣 has a rational approach to the issue, and in fact quite a positive message as he believes that we’ve got the idea of humans and aliens the wrong way round. He believes that there is a prevailing view that aliens will be friendly while we are aware of the hostility prevailing between powers in the human world, but that the real situation is that human beings are potentially much more altruistic than we give ourselves credit for, and it’s likely to be the aliens who behave in a vicious manner towards us. Other believers in the Dark Forest answer say that non-believers in it are being anthropomorphic by imagining that aliens would not be hostile, because the biosphere we know of is quite savage. I’d say that this is a projection, and also that to extend the comparison, there are circumstances where organisms positively advertise their presence, for example to seek a mate or as warning colouration. The former is a little hard to fit into this scenario, but the closest analogy would probably be something like exchange of information for the benefit of both cultures, a relationship described ecologically as symbiosis. For instance, assuming the presence of multiple hostile civilisations in the Galaxy, it would seem to make sense for two less powerful cultures to tell each other about the threats. Something like warning colouration is another possibility. A species of aliens might wish to broadcast its potential hazardousness to others in order that it not be bothered, rather like the Mutually Assured Destruction (MAD) scenario, and in fact the Dark Forest is based on game theory, which is influenced by MAD.

The idea of more powerful civilisations disrupting and destroying less powerful ones has a persuasive-seeming precedent in human history, because in general European and European-derived cultures have tended to do that to a horrifying degree on our own planet to other human cultures. This,though, is based on what happens within our own species in highly specific circumstances which rely substantially on the idea of territory and land use, along with a religious and political outlook used to justify those atrocities. It’s this which seems anthropomorphic to me. The Dark Forest seems to be the same situation translated into interstellar space and assumes that the species or entities involved are similar to us in the mode we have employed during history, which is likely to be highly atypical even for us, and we may also be projecting our own assumptions onto ecology when we assert these things. There are plenty of examples of peaceful coöperation between species, such as symbiosis and the very fact that multicellular organisms are themselves alliances of unicellular ones for mutual benefit in the same way as an ant colony is. There’s also the consideration that life on this planet has been around for a very long time now and it would seem to make more sense to nip things in the bud before intelligence of our kind has even evolved, but this hasn’t happened. However, I do maintain a modicum of sympathy and interest in 刘慈欣的 argument because I suspect it’s linked to dialectical materialism, and in order to assess it properly I would have to know more about Maoism, the current status of the Chinese 共产主义, his status with respect to the Chinese government and so forth. I would maintain that China, because it has a stock market, is capitlist, but that doesn’t mean it doesn’t have valid philosophical views built upon its ideology. It’s all a bit complicated, and interestingly something he goes into himself in his novels. Although I don’t agree with the Dark Forest at all, laying it out as a Marxist-influenced argument is interesting and may suggest other solutions to the Fermi Paradox which are freer from the taint of capitalism.

Spending Too Much Time On The Internet

I have felt since the early 1980s that there may be a trade-off between Information Technology and human space exploration. I don’t want to go into too much depth here but I suspect there is an inverse relationship between the two, such that the more IT advances, the less effort is expended on sending people into space and the more human beings explore the Universe, the less happens in the sphere of computing and the like. This is a subject for at least an entire post, and I won’t do more than mention it in passing here. Suffice it to say that when the Drake Equation and Fermi Paradox were first thought of, IT was very primitive compared to how it is now, although the internet itself is quite possibly the most predictable thing which has ever happened (see for example Asimov’s ‘Anniversary’ published in 1959 or Old Burkster’s Almanac in the 1970 ‘Tomorrow’s World’ book, which actually predicted the exact year it would take off (1996), so the link could’ve been made then. In fact, Olaf Stapledon predicted something similar in ‘Star Maker’ in 1937, where he imagined a species of aliens which ended up never leaving their home planet, which is doomed due to losing its atmosphere, because they end up lying in bed all day hooked up to a global information communications system, which also tellingly begins by encouraging cosmopolitanism but soon degenerates into echo chambers.

The “spending too much time on the internet” solution to the Fermi Paradox goes like this. We went through the Space Age and appear to have come out the other side. On this other side, we have an almost universally accessible network of devices for information and communication. If we are able to develop sufficiently convincing virtual worlds, we might all end up in the Matrix and not bother going into space at all. Perhaps this is what always happens to sufficiently advanced technological civilisations. The author of the Dilbert cartoons, Scott Adams, once stated that if anyone ever managed to invent the Holodeck, it would end up being the last thing ever invented because everyone would just end up living in that virtual world and not bothering with anything else. This is different to the idea of the Universe being a simulation because in this situation everyone knows where they are is not “real”, although Gen-Z-ers might argue with a definition of reality which divides meatspace from cyberspace with considerable justification, and willingly participates anyway. If you’re doing that, why bother to explore strange new worlds or seek out new life and civilizations. In fact you could do that anyway because I’m sure a virtual Enterprise would be one of the first things to be created in this virtual world, if it hasn’t been already. It wouldn’t be “real” in the way we understand it, but who are we to say? It would, however, mean we aren’t going to meet any aliens because they’re all on Facebook or something, which we may already have noticed is so.

One problem with this answer is that it assumes aliens are all similar enough that they get to a stage when they not only start to create communal online environments but also then get addicted to them and abandon space exploration. It isn’t clear that they’re similar enough even to have the same mathematics as we have, so why assume this is what happens? It may well happen to humans, but that could have little bearing on what happens anywhere else.

This can be turned round:

The Planetarium Hypothesis

There are several different versions of this and it blends into another version. The most extreme and probably easiest to state version is that we are living in a simulation, which Elon Musk claims playfully and perhaps not very seriously to believe. The argument that this is so in his case is based on the expectation that technological intelligences would very commonly get to the point where they could simulate the Universe, and within those simulations, more technological intelligences would do the same and so on, meaning that the number of virtual worlds compared to the real one is very large and therefore that we are much more likely to be living in one of those than the unadulterated physical Universe. Hence this is not the real world, and for simplicity’s sake, or perhaps as an experiment, we’re sitting in a simulation which, unlike base reality, is devoid of aliens. The alternative, according to Musk, is that in the near future we’re likely to become extinct, because there would then be no intelligent civilisations capable of simulating the Universe and therefore that we are living in base reality, but not for very long because there is about to be a massive calamity which will wipe us all out. I don’t find this argument to be at all satisfactory. Like the previous argument, it assumes that history will proceed in the same manner for everyone and that we all end up producing simulations. It also assumes simulations are possible when there are at least two good reasons for supposing they aren’t. One of these is the three-body problem. Three bodies whose attraction to each other is significant will behave chaotically in almost all cases and there are no ways of predicting their movement with a finite number of mathematical operations. There are exceptions to this. A few entirely predictable stable situations exist, most of which are too rare to occur in the observable Universe although there is one which may well exist somewhere in a star system in a galaxy far away. However, that’s the three-body problem. The Universe we experience has many more bodies than that in it. The number octillion has been mentioned in connection with this. For the Universe as we know it to be simulated, even the bits we’ve visited with space probes, an infinitely complex computer would be needed. Another problem is that of consciousness. Simulating consciousness doesn’t seem to be the same thing as actually being conscious, yet we know ourselves to be conscious. We could be mistaken about our substrate – maybe it’s transistors or qubits rather than brain cells – but for that to be so, panpsychism also has to be true, which as far as I’m concerned is fine but most people don’t accept that view of the nature of consciousness. There may be a functionalist solution though. A further objection is based on Musk’s own thought about the multiplicity of simulations. If a powerful computer can run a simulation of the Universe in which other computers can also run simulations of the Universe and so on, the largest number of simulations running would also be the most rubbish ones, at the bottom of the pile, because that’s the point at which the “tree” has its final twigs, and that means we’re more likely to be in a rubbish simulation, but we aren’t, and that simulation would also be too simple to allow any further simulations to be run. Minecraft exists, therefore we are not living in a simulation!

One point in favour of the Planetarium Hypothesis is that it’s highly sceptical and makes very few assumptions compared to some other solutions, and in that respect it’s similar to Absent Aliens. There are also less extreme versions of this which take the word “planetarium” almost literally. We have never bodily travelled more than 234 kilometres into trans lunar space, which happened with the ill-fated command module of the Apollo XIII mission in 1970. Therefore, for all we know the rest of the Universe could be faked for our benefit, although this assumes that the likes of the Pioneer and Voyager probes are just sitting somewhere being fed loads of false data or something. There’s a decision to be made in this explanation as to where one cuts things off and decides everything else is fabricated, and it begins inside one’s own head. This thought has been used at least twice by major SF writers. In the 1950s, Asimov (again!) wrote a story where the first astronauts to go behind Cynthia (“the Moon”) found it was painted on a board and propped up by wooden struts. Later on, Larry Niven, who had written himself into a bit of a corner with his Known Space series because he had to try to maintain continuity, playfully came up with the idea that none of it had happened and it was just being simulated in VR on Cynthia.

It’s been suggested that the almost perfect match between the apparent size of Cynthia and that of the Sun is a kind of Easter Egg, that is, a clue that we’re living in a simulation. It doesn’t seem necessary for the existence of intelligent life here that that match should be so perfect, and there seems to be no explanation for it other than chance. And it is peculiar. It will only hold true for the approximate period during which oxygen-breathing terrestrial animals can thrive here because the distance between Cynthia and Earth is increasing by a few centimetres every year. It would be interesting to run the figures about this, to see for example how big and/or distant a moon would have to be if we were orbiting within the habitable zone of 61 Cygni B or something, because there might be a clue there.

I have to admit it’s tempting to believe that the empyrean, as it were, is hidden from us by some kind of holographic Dyson sphere, i.e. that the planetary Solar System and Kuiper Belt are surrounded by a fake display of the rest of the Universe, just because it’s an appealing idea, and there are even reasons for supposing this to be the case. However, that would mean that Pioneers 10 and 11 along with Voyagers 1 and 2 either hadn’t hit the solid sphere of the sky, as it were, yet, or that they had but are themselves in a simulation of interstellar space. It was recently suggested that the Solar System may be enclosed in a vast magnetic tunnel as it moves around the Galaxy, but it seems to be several hundred light years wide and a thousand light years long, so if that’s the edge of the simulation it seems a bit pointless. Another appealing idea associated with this is that all that stuff about Venus being a hot, steamy jungle planet and Mars having canals and Martians living on it could be entirely true and we’re just having all that concealed from us and, again, fake data being fed to space probes. Of course, if human astronauts actually did go out there this would be harder to maintain, unless one begins to suppose that they’re all abducted and brainwashed or something.

The answer this kind of blends into is the

Zoo Hypothesis

This used to be my favourite answer when I was younger, and I just basically assumed it was true, but it lacks the parsimony of absent aliens or the Planetarium Hypothesis. If you’re familiar with ‘Star Trek’, you’re probably aware of the Prime Directive, also known as Starfleet General Order 1:

No starship may interfere with the normal development of any alien life or society.

We don’t know how extensive or organised any technologically advanced species or other intelligence which might exist outside our Solar System is, or anything about their ethics or politics. However, the admittedly anthropomorphic analogy with how things are here with uncontacted people on our planet, we do have at least a rudimentary ethic to protect them. We note that they are self-sufficient, unfamiliar with how things work in global society, highly vulnerable and at risk of extinction. Often the reason their lives do end up disrupted is due to governments or multinationals wanting to get hold of resources which happen to be located where they are. This is never going to be the case for Earth in terms of mineral resources, as even phosphorus is found elsewhere in sufficient quantities, if that turns out to be important, and there isn’t going to be any kind of invasion to get hold of metals or whatever from here. What we may have is culture and biodiversity. Speaking of biodiversity, there are reserves and national parks in many countries on this planet, so maybe we’re in one of those. It isn’t clear whether to an alien we would be more like an uncontacted indigenous culture or endangered wildlife, depending on how different our intelligence and minds are, but there are measures in place here for the protection of both. Moreover, when the difference is large enough, it’s possible for human technology to maintain an environment in captivity which may create a persistent illusion of the habitat an animal is found in before human interference, and we could be in such an environment.

I’m going to present my train of thought, as was, on this issue, starting with the premises of the Fermi Paradox. The Galaxy is more than twice as old as this Solar System, so it’s fair to assume that intelligent life evolved many æons ago, even before the Sun formed. This is also more than ample time for the Milky Way to become thoroughly known to the technological cultures that exist within it, and it can also be assumed that any species able to leave its star system must have achieved some kind of utopia in order to be able to use the energy and resources efficiently enough to do so. Therefore the probable situation across the Galaxy is that a peaceful and benign community exists which will protect the less advanced civilisations found within it. This applies to Earth. We are observed by aliens and there is a non-interference ethic which prevents us from being contacted because of the disruption that has been seen or modelled to occur in the past if it happens too early in the history of a species. This policy has been in place for thousands of millions of years. When we reach a certain stage in technological and perhaps social development (I actually think these always occur hand in hand), we will be contacted and, perhaps after a probationary period, invited to join the “Galactic Club”. There is well-worn standard procedure for doing this. It can also be supposed that because this society is so ancient and long-established that it works as perfectly as any society could, so the procedures can no longer be improved upon. I should probably also mention that back then, as now, I thought in terms of technological cultures rather than species. Individual races come and go in this scenario just like individual humans in society, but the culture is permanent, or at least very durable. This is the condition of the Galaxy.

Although my use of the word “culture” calls Iain M Banks’s fiction to mind, I began to use it before they were first published. The word is just very apt to describe this kind of situation. I used to be very confident that this was how things were, and it is more or less the Zoo Hypothesis. Where it falls down, I think, is in having a quasi-religious tone to it. It could be argued that this is akin to our own ancient tendency to project our wishes and stories onto the sky, and I do think this is significant. However, there are different ways to respond to that thought. One is that we unconsciously know how things are and therefore made various attempts to express that fact given the current state of knowledge throughout our history. Alternatively, the reverse could be true: we have a tendency towards magical thinking which results in religion, and this leads us towards imagining how to have things this way in the face of what we perceive to be powerful evidence against the supernatural. Some fundamentalist Christians accept the existence of aliens but see them as demonic. It’s very difficult to examine oneself closely and neutrally enough to come to a firm conclusion as to what belief in the Zoo Hypothesis is motivated by, and therefore to assess it scientifically or rationally. There are certainly inductive inferences operating within the argument, but perhaps not deductive ones. “Accusing” it of having a religion-like flavour is not the same as refuting it, and part of the decision as to whether to accept or reject it relates to how one feels generally about religion.

That said, there are some ways of arguing rationally against it. It only takes one small group within the Galaxy, perhaps the closer star systems in this case, to behave differently for First Contact to occur. Since I’ve concluded also that mature interstellar cultures must be anarchist, there would be no law enforcers to prevent this from happening. However, anarchist societies are not necessarily chaotic and may have customs which prevent such things from happening. For instance, queues are not generally legally enforceable but people rarely jump them due to social disapproval or the simple act of people providing the service one is queueing for ignoring violators, and there are apparently places where there are no laws regarding traffic priority at junctions, but people behave harmoniously according to custom. It hasn’t escaped my attention that I’m talking about Douglas Adams’s “teasers” here. As far as we can tell, though, this hasn’t happened. Or has it?

UFOs Are Alien Spacecraft

Like most people, I reject this out of hand but there’s a point to stating in detail examples of what people who believe this generally think. There is some variation in the details, but I think it works roughly as follows.

For quite some time now, perhaps since prehistory, this planet has been regularly visited by spacecraft ultimately originating outside this Solar System, containing intelligent aliens. These aliens sometimes abduct humans and other animals to do experiments on them. The governments of the world are aware of the situation but keep it secret from the public to avoid panic or because they’ve made some kind of deal with the aliens.

This view has a number of variants and is the basis of several religions. One such view is that ancient astronauts are responsible for world religions and have interfered in our history, perhaps even interbreeding with our ancestors or genetically engineering them for the appropriate kind of intelligence. Incidentally, this is known as “uplift”. Another view, of course, is that the human world is run by alien reptilian humanoids or shapeshifters for their own nefarious purposes and not for human benefit. There are also notions such as aliens wanting to get elements or substances from this planet which are rare elsewhere in the Universe, such as human enzymes or for some reason gold.

I stopped believing that UFOs were alien spacecraft when I was about ten, I think. There are a number of very good reasons to suppose this is not the case. The initial trigger that ended my belief was that the occupants of the craft were said to be humanoid in possibly all cases, which I saw as completely incompatible with them being aliens. For a while, I believed they were time machines and the beings on board were highly evolved humans from the future. Although I no longer believe this either, I still think it’s more plausible than the alien idea. I had a bit of a blip in my disbelief when I heard about the star chart aboard the spacecraft in the Hills’ abduction, which closely maps nearby star systems from a certain angle, but now think that this could be made to conform to the pattern drawn by projecting the stars in various different ways until a rough fit was achieved, which is in fact what happened with this.

There are various problems with the flying saucer hypothesis. One is the fact that people report humanoid occupants, although there are possible explanations for this. The entities could be manufactured or genetically engineered to look like us or convergent evolution might ensure that tool-using species are humanoid. Another is more serious: UFOs are visible. People report detecting them in various ways, such as on RADAR screens or more often visually. Even with our own relatively limited technology, we are able to make things almost invisible and undetectable on RADAR, but we are expected to believe that aliens can’t do this even though they can cross interstellar distances with ease. The alternative is that they want to be seen, but this is an unsustainable intermediate position because it doesn’t make sense for just a few craft to be seen occasionally. It can be confidently asserted that if they wanted to be invisible, they would be, so it then becomes necessary to explain why they don’t want to be. It’s fine as such if they don’t, but it would also mean the idea that they only associate with the “leaders” of the human race goes by the by. Also, the very idea that they would respect governmental power structures makes no sense. There’s no reason to suppose aliens would have government or that they would pay more attention to the people who happen to think they’re at the top of the pyramid. Of course, I’m personally convinced that they’re all anarchist, but there are other circumstances in which aliens might wish to subvert the hierarchy or just end up doing it anyway. Apart from anything else, they are after all aliens. They may not have the capacity to understand the nuances of human governmental systems, or they may arrive here not having learnt how it works. Or, they may wish to disrupt human society for nefarious purposes by inducing the panic world governments are supposèdly trying to avoid by keeping them secret. The nub is that if aliens were visiting us, they’d be able to hide from everyone, and if they didn’t hide from everyone they’d hide from no-one.

I do believe in UFOs of course. There very clearly are aerial objects which remain unidentified by any human observer. These are often things like Venus, birds, drones, weather balloons and so on, but I do also think there is another, very small set of other objects. These are secret military aircraft which happen to get spotted by people from time to time but whose existence isn’t openly admitted by the authorities. The one time I saw a UFO I couldn’t explain, that’s what it turned out to be, so maybe I’m biassed because of that.

I also believe that aliens would be benevolent for the reasons I set out under the Zoo Hypothesis.

Simply not believing that UFOs are alien spacecraft is not the same as believing we aren’t being visited or observed though. Maybe they are here. Maybe we are the aliens without knowing. I’m getting ahead of myself though. Here’s another similar idea to UFOs being alien spacecraft:

They’re Here But We Haven’t Noticed

This one is something of a mental health hazard because it very much stimulates paranoia, and again there are several versions of this. The closest one to the previous explanation is that there are indeed alien spacecraft, or perhaps nanoprobes, visiting or monitoring this planet but we can’t detect them, or haven’t done so. It does make sense that if they wanted to remain hidden, they would succeed in doing so, given their level of technology. One suggested means of eploring the Galaxy is to launch swarms of minute spacecraft in order to save energy and avoid collision with dust and other bodies between the stars simply by being smaller. It would also be relatively easy to secrete a reasonably large completely visible probe somewhere in the Solar System or in orbit around Earth without attracting much attention. Another somewhat disturbing further option exists. Right now, we can do 3-D printing and have some ability at genetic engineering. We aren’t that far off inventing a replicator, should that prove possible at all, bearing in mind that things often seem easier before they’ve been done. But for a technology far in advance of our own, it should be possible not only to produce a completely convincing living human, but even one whose memories are false and doesn’t even realise they’re the product of an alien machine. In other words, we could ourselves be aliens without even knowing. This kind of prospect is very similar to the kind of beliefs many children have and also has some resemblance to Capgras Syndrome. Whereas all of these things are possible, they are almost by definition non-scientific as they have no way of being falsified. Perfect camouflage is just that. No test can be performed to verify or refute that it happens. Therefore, whereas all of these things seem entirely feasible, they aren’t actually particularly meaningful as a simpler explanation for what we observe is that there are no alien spacecraft or “pod people”.

They’re Too Alien

Many answers to the Fermi Paradox seem quite anthropomorphic in one way or another. For instance, both the Zoo Hypothesis and the Dark Forest attribute perceived human-like behaviour, in opposite directions, to these unknown and possibly non-existent beings. But what if the reality is that aliens are in some way intelligent but also truly alien? What if they’re just fields of singing potatoes? They’re very intelligent, to be sure, but all of that cleverness is channelled into art so sophisticated and arcane that it can’t be grasped by humans, and also they sit there and do nothing else. They might send up a shoot or two with eyes on the end every now and again and look at the stars and planets in their night skies, but it doesn’t grab their interest. Of course, the singing spud scenario is borrowed from Grant and Naylor, but it’s one of many possibilities, some unimaginable and all unanticipated. We are one example of a tool-using species. Another one may be dolphins, and it doesn’t look like they’re going to develop our kind of technology at any point, not only because they live in the sea and don’t have anything like hands, but also because they’re just not interested, and that’s just on this planet and quite closely related to us. Or they could be a spacefaring species like some humans aspire to be but just have no concern about meeting any aliens or getting in touch with them. We might not even recognise each other as alive. For instance, what if they were a rarefied plasma drifting between the stars?

Different Or No Maths

I went into this one the other day here. Most of us humans don’t distinguish between subitising, which is the ability to judge how many items there are at a glance and which we are usually able to do about five, and the kind of activity which counts as arithmetic and mathematics. I won’t wade in here but there doesn’t seem to be any good reason why we would have evolved an aptitude to do mathematics given our lifestyle, or for that matter for any other species to do so given its niche, but we’ve done so anyway and this has somehow proven to be useful in rocket science and the like. Maybe it’s this which is missing from other intelligent life forms’ faculties, so they do fine building some kind of civilisation where everyone isn’t just a number, but they never leave their home world because they never develop anything able to do that.

Right, so this has turned out really long, so at this point I’m going to stop and publish. Part II in a bit, possibly tomorrow.