Hail Eris!

It used to be so simple, concordant and ordered. There were nine planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Hamlet, Neptune and Pluto. Of course, on the whole people didn’t call the one between Saturn and Neptune by that name but my patience with puerile jokes is finite and I actually think making one of them a joke just because it has a ridiculous name does it and science a disservice. My Very Eager Mother Just Served Us Nine Pizzas. Many Volcanoes Erupt Mulberry Jam Sandwiches Under Normal Pressure, which is the one I remember. Those mnemonics are actually quite odd, not just because they’re memorable sentences – it’d be odd for a mnemonic not to be memorable – but because I don’t actually think many people have any problem remembering what order the planets are in. It’s a bit like “Richard Of York Gave Battle In Vain” or “Roy G. Biv”. It isn’t really hard to remember what order the colours of the rainbow are because they blend into each other: orange is reddish yellow, indigo bluish violet and so on. Indigo in fact is just a kludge so they add up to seven. It’s not that it isn’t a real spectral colour so much as that lime green and cyan are too, but don’t get a mention.

I have a dormant project on the Althist Wiki called ‘The Caroline Era‘, where I imagined that instead of history doing a seemingly weird swerve at the end of the 1970s CE, it just carried on going in the same direction, with the post-war consensus being preserved. It turns out to be messy and difficult to contrive circumstances in which this could’ve happened. No fewer than seven major trends would have to have been different beforehand in order for this to have continued, one of which occurred as early as 1820. This alternate history also has different astronomy, not because there’s any difference in the planets, moons and the like but because the attitudes towards them were preserved and the technology available for investigating them advanced more slowly, in a way. Two of the ways in which this manifests itself are in the names of the solar planets and what’s considered a planet.

Back in the day, a planet was considered a large round non-luminous object orbiting the Sun independently, more or less. There wasn’t a firm definition but this is probably what people would agree with if you described them that way. I have already gone over the rather dubious procedures which led to this being changed to something most ordinary people would disagree with. Before this happened, however, astronomers, science fiction writers and others practically had a name picked out ready to apply to the next major planet to be discovered: Persephone. Persephone is kind of supposed to be the name of the planet, except that there’s a long-established asteroid called Persephone too. That said, there are also many duplicate names in the system and it doesn’t seem to have stopped astronomers reusing them. Ganymede springs to mind. Also, there’s a Latin version, Proserpina, which is also an asteroid, discovered quite early. Nonetheless the opinion is expressed that any “proper” planet out there beyond Pluto will not be called Persephone for this reason.

When Eris was discovered, it wasn’t given a name because its discovery was the main cause of controversy over the definition of a planet, which I’ve already said I consider rather silly. Because it wasn’t clear how it should be regarded, and there are different naming conventions for differently-classified objects in the system, it couldn’t be officially named. It was, though, given the unofficial name Xena after a show I’ve never seen called ‘Xena, Warrior Princess’, and its moon was given the name Dysnomia. The problem Eris was seen to pose was that if it were to be admitted into official planetaricity, the chances are that a lot of other similar worlds would also have to be called planets, and we could well have ended up with more than a hundred official planets. Now I have to admit that one of the things which annoyed me about what I now think of as the children’s space horror book ‘Galactic Aliens‘ (my review is on that page) was its portrayal of star systems as containing dozens of planets, which seemed unrealistic to me, but it now appears that it’s merely a question of definition, and the slight sense of disease I feel at this is not widely shared. The IAU decided to redefine “planet” because of Eris, making its name, after the goddess of discord, highly appropriate because that proved to be unpopular with the public. I presume the motive for calling it that was its disruption of the concept of “planet”, and it certainly succeeded in sowing discord when it provoked the turn against Pluto’s planethood among IAU members.

Eris is comparable in size and mass to Pluto and the probable former plutino Triton. Eris is a mere two percent smaller than Pluto in diameter and 27% more massive, which kind of makes the two cross over and means there isn’t much to choose between them. Hence there is a sense of fairness in excluding Pluto as a planet if Eris isn’t alowed to be one either. Nonetheless, if it had been discovered under different circumstances it would almost certainly have been thought of as one. There is no reason why, if you look at Pluto as a planet, as we did for many decades, you shouldn’t also look at Eris as one.

Compare and contrast this with Sedna. Not to diss the world, but it’s only a little larger than Ceres. Its mass is unknown because it seems to have no moon, which is unusual for these objects. It counts as a dwarf planet, to be sure, but Pluto and Eris are on a different scale.

Naturally Eris has never been visited. It’s the seventeenth largest world in the system, and the largest never to have had a spacecraft sent to it or past it. It averages almost 68 AU from the Sun, takes 559 years to orbit and is currently about a hundred AU from us. Sunlight takes thirteen hours to get there right now. At its closest approach, it comes slightly closer than Pluto’s average distance but it doesn’t cross Neptune’s orbit and is therefore not a plutino and doesn’t interact with Neptune. Its maximum distance from the Sun is 97.4 AU, which means it’s currently about as far away as it gets. I suspect that there are a number of Kuiper belt objects whose existence we only know of because they’re currently near perihelion, but this doesn’t apply to Eris. The Sun is currently over nine thousand times dimmer there than it is here. The distance of the world, and in fact I’m going to call a spade a spade and refer to it as a planet, the planet from the Sun is unprecedented in this series. It’s about five dozen times as bright as moonlight at that distance, meaning that finally the idea of a distant planet being so far from the Sun that it’s like night there may finally have begun to be fairly accurate, although a night of a brightness only seen on this planet had there been a fairly nearby supernova in the past few days. Surface temperatures vary between -243 and -217°C, so it doesn’t even get warm enough there to melt nitrogen or oxygen. It’s currently on the low side, and the seasons would be quite substantially determined by its distance from the Sun rather than just its axial tilt, although that’s also considerable at 78° if Dysnomia’s orbit is anything to go by.

Eris is bright. It isn’t like many of the other trans-Neptunian objects (TNOs), which are quite dark and also red. Its surface reflects most of the light back again, which makes it colder than other such worlds at comparable distances, and it’s also unlike Pluto, Charon and Triton in that respect. This is Charon:

. . .which looks quite like Pluto:

(to an extent), which in turn resembles Triton to a certain degree:

All three worlds have tholins on their surfaces to some extent and reflect up to 76% of sunlight. Eris could well be as bright as Enceladus. Something else is going on, or has gone on, there. One thing which very probably does happen is that it has a seasonal atmosphere. The surface is likely to be covered in a layer of frozen nitrogen and methane which will evaporate in a couple of centuries time when spring comes, at which point it will have a tenuous nitrogen-methane atmosphere for the summer, then with the onset of autumn this will freeze and snow onto the surface, once again covering it. This is a five and a half century process though, so we will never witness it. The last time Eris was where it is now was two decades before the Battle of Bosworth Field and three decades before Columbus reached the New World, and each season lasts something like the interval between the first Boer War and the present day, which means it’s just barely within the memory of my grandparents, and I’m middle-aged. That would be the average length. In reality, the winter is the longest season and the summer the shortest, and all seasons are somewhat affected by the considerable axial tilt. My ignorance of calculus makes it impossible to be more precise.

In considering Eris, we’re thrown back substantially onto pre-space age technology. Although there have been many advances in astronomical observation and reasoning since 1957, considering the planet is reminiscent of the kind of observation and reasoning astronomers used to have to use when all they had was what they saw through telescopes. This is not entirely true though, because conclusions were drawn on the basis of the actual space exploration of similar worlds, which didn’t just rely on light and other electromagnetic radiation, and the Hubble Space Telescope made a big difference too. There are also better modelling techniques. Even so, Eris is a dot in a telescope with another dot, Dysnomia, orbiting it, and astronomers have to base most of their studies on those. I’m once again reminded of Chesley Bonestell’s paintings of Saturn seen from different moons where the central subject more or less had to be the planet’s rather than the moons’ appearance because little was known about the characteristics of the moons themselves other than what was implied by their appearance through a less-than-ideal set of telescopes through Earth’s atmosphere, and their movements. Io, for example, was probably never depicted with a volcanic eruption taking place on it until the late ’70s or after. Nonetheless it’s still possible to go a long way with what we’ve got, and there’s even a kind of nostalgia to it. Just as we used to imagine oceans on Venus and canals on Mars, so we can project our wishes onto Eris. For instance, it could have the ruins of ancient alien space bases on it and we’d be none the wiser, although I very much doubt that’s so. Science fiction might be able to colour it in that way, but the genre hasn’t really developed in that direction. The planet is in a bit of a peculiar position because on the one hand it was fêted and imagined in detail for decades before it was discovered – mentioned on classic ‘Doctor Who’ for example – but when it was discovered for real, it ceased to be considered a planet within about a year and the kind of popular culture which existed by then had little space for such a concept as the “tenth” planet. It’s also been stated that not calling it the tenth planet is insulting to Clive Tombaugh’s memory, because he discovered Pluto. Calling it the ninth would be the same, and also wouldn’t make any sense. It’s either the tenth planet or not a planet at all.

The presence of Dysnomia is fairly typical for dwarf planets, which are often binary or at least have moons. Dysnomia is around seven hundred kilometres in diameter and is therefore almost certainly spheroidal. Here’s an image of the two together:

Eris is the brighter light in the middle, Dysomia the left lesser light. Since the moon can be observed to orbit Eris and perhaps also displace it as it does so, the time taken and the distance between the two can be used to calculate the mass of Eris, and the displacement would enable the density and mass of Dysnomia to be found. The moon might be a rubble pile, apparently, which surprises me because it seems too large not to have welded itself together. It was originally unofficially called Gabrielle due to the ‘Xena, Warrior Princess’ thing. Dysnomia orbits Eris once in almost sixteen days, averaging 37 000 kilometres separation in an almost circular path. It’s a lot less reflective, so it may not be made of the same stuff.

It’s possible to say a few of the usual things about Eris which follow from its known size, mass, density and orbit. It has a diameter of 2326 kilometres and a surface gravity 8.4% of Earth’s, which is about half Cynthia’s and close to Pluto’s. Its orbit is inclined 44° to the ecliptic. Its gleaming surface, which is almost uniformly bright, makes it difficult to measure its rotation, but it seems to be fourteen and a half days, making it just a little less than the “month” of Dysnomia. The planet is actually easily spottable through a large telescope. It wasn’t discovered before because its high orbital tilt keeps it away from the ecliptic where other planets generally stay. Even so, right now it is about ten thousand times too dim to be seen with the unaided naked eye, which is about as bright as a Sun-like star would look at the edge of our Galaxy, i.e. about twenty thousand light years away, so it ain’t exactly bright from this distance. It spends about thirty years in each of the maybe four zodiacal constellations it passes through and is currently in Cetus, the Whale.

Eris is not a plutino but a scattered disc object. The scattered disc is not the Kuiper belt, which consists of objects orbiting close to the plane of the Solar System, but comprises objects with highly tilted orbits such as Eris itself and many others, whereas the Kuiper belt planetoids orbit close to the plane of the inner system. The planet, however, still is quite remarkable as it shines forth compared to many of the others in the scattered disc, which have probably yet to be discovered due to their low albedo. It’s a little hard to imagine what could be so exceptional of Eris, it being, like the others, remote from other such objects barring its moon, and other scattered disc objects also have moons, often large compared to their own bulk like Dysnomia. However, discussion of this should wait for another time when I’ll be going into trans-Neptunian objects in more depth.

The surface area is almost seventeen million square kilometres, which is larger than any continent except Eurasia. It has a 26-hour day. It’s higher in rock than many other outer worlds. There’s very little else to say about Eris because so little is known about it, but it’s certainly a fair target for exploration as it’s certainly unusual. The problem is that because the charisma of being declared a planet was denied it, it’s harder to make a case for visiting it. Pluto didn’t suffer this problem because New Horizons was launched a few months before it lost its status. With current spaceflight technology, it would take a spacecraft nearly a quarter of a century to reach it, and once there it would take a radio signal more than half a day to reach Earth at its current distance. It won’t reach its closest approach until the late twenty-third century. The only probe-based exploration undertaken was from New Horizons itself, which was actually further from Eris than Earth was at the time, the advantage being that it was seen from a different angle.

To be honest, it’s a tall order to try to say anything much at all about Eris, as you may have gathered, but there would surely be a lot to say if the opportunity arose to explore it. Right now this seems quite unlikely, and by the time it’s in a position to be visited, we’ll probably be extinct or have lost the ability to launch spacecraft, so don’t hold your breath.

Next time, I’ll be talking about Pluto’s moons, of which there are five known.

Leave a comment